# Copyright (C) 2013-2014 Florian Festi # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import math def normalize(v): "set lenght of vector to one" l = (v[0] ** 2 + v[1] ** 2) ** 0.5 if l == 0.0: return (0.0, 0.0) return (v[0] / l, v[1] / l) def vlength(v): return (v[0] ** 2 + v[1] ** 2) ** 0.5 def vclip(v, length): l = vlength(v) if l > length: return vscalmul(v, length / l) return v def vdiff(p1, p2): "vector from point1 to point2" return (p2[0] - p1[0], p2[1] - p1[1]) def vadd(v1, v2): "Sum of two vectors" return (v1[0] + v2[0], v1[1] + v2[1]) def vorthogonal(v): "orthogonal vector" "Orthogonal vector" return (-v[1], v[0]) def vscalmul(v, a): "scale vector by a" return (a * v[0], a * v[1]) def dotproduct(v1, v2): "Dot product" return v1[0] * v2[0] + v1[1] * v2[1] def circlepoint(r, a): return (r * math.cos(a), r * math.sin(a)) def tangent(x, y, r): "angle and length of a tangent to a circle at x,y with raduis r" l1 = vlength((x, y)) a1 = math.atan2(y, x) a2 = math.asin(r / l1) l2 = math.cos(a2) * l1 return (a1+a2, l2) def rotm(angle): "Rotation matrix" return [[math.cos(angle), -math.sin(angle), 0], [math.sin(angle), math.cos(angle), 0]] def vtransl(v, m): m0, m1 = m return [m0[0] * v[0] + m0[1] * v[1] + m0[2], m1[0] * v[0] + m1[1] * v[1] + m1[2]] def mmul(m0, m1): result = [[0, ] * len(m0[0]) for i in range(len(m0))] for i in range(len(m0[0])): for j in range(len(m0)): for k in range(len(m0)): result[j][i] += m0[k][i] * m1[j][k] return result def kerf(points, k, closed=True): """Outset points by k Assumes a closed loop of points """ result = [] lp = len(points) for i in range(len(points)): # get normalized orthogonals of both segments v1 = vorthogonal(normalize(vdiff(points[i - 1], points[i]))) v2 = vorthogonal(normalize(vdiff(points[i], points[(i + 1) % lp]))) if not closed: if i == 0: v1 = v2 if i == lp-1: v2 = v1 # direction the point has to move d = normalize(vadd(v1, v2)) # cos of the half the angle between the segments cos_alpha = dotproduct(v1, d) result.append(vadd(points[i], vscalmul(d, -k / cos_alpha))) return result