102 lines
2.6 KiB
Python
102 lines
2.6 KiB
Python
# Copyright (C) 2013-2014 Florian Festi
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
import math
|
|
|
|
|
|
def normalize(v):
|
|
"set lenght of vector to one"
|
|
l = (v[0] ** 2 + v[1] ** 2) ** 0.5
|
|
return (v[0] / l, v[1] / l)
|
|
|
|
|
|
def vlength(v):
|
|
return (v[0] ** 2 + v[1] ** 2) ** 0.5
|
|
|
|
|
|
def vclip(v, length):
|
|
l = vlength(v)
|
|
if l > length:
|
|
return vscalmul(v, length / l)
|
|
return v
|
|
|
|
|
|
def vdiff(p1, p2):
|
|
"vector from point1 to point2"
|
|
return (p2[0] - p1[0], p2[1] - p1[1])
|
|
|
|
|
|
def vadd(v1, v2):
|
|
"Sum of two vectors"
|
|
return (v1[0] + v2[0], v1[1] + v2[1])
|
|
|
|
|
|
def vorthogonal(v):
|
|
"orthogonal vector"
|
|
"Orthogonal vector"
|
|
return (-v[1], v[0])
|
|
|
|
|
|
def vscalmul(v, a):
|
|
"scale vector by a"
|
|
return (a * v[0], a * v[1])
|
|
|
|
|
|
def dotproduct(v1, v2):
|
|
"Dot product"
|
|
return v1[0] * v2[0] + v1[1] * v2[1]
|
|
|
|
def circlepoint(r, a):
|
|
return (r * math.cos(a), r * math.sin(a))
|
|
|
|
def rotm(angle):
|
|
"Rotation matrix"
|
|
return [[math.cos(angle), -math.sin(angle), 0],
|
|
[math.sin(angle), math.cos(angle), 0]]
|
|
|
|
|
|
def vtransl(v, m):
|
|
m0, m1 = m
|
|
return [m0[0] * v[0] + m0[1] * v[1] + m0[2],
|
|
m1[0] * v[0] + m1[1] * v[1] + m1[2]]
|
|
|
|
|
|
def mmul(m0, m1):
|
|
result = [[0, ] * len(m0[0]) for i in range(len(m0))]
|
|
for i in range(len(m0[0])):
|
|
for j in range(len(m0)):
|
|
for k in range(len(m0)):
|
|
result[j][i] += m0[k][i] * m1[j][k]
|
|
return result
|
|
|
|
|
|
def kerf(points, k):
|
|
"""Outset points by k
|
|
Assumes a closed loop of points
|
|
"""
|
|
result = []
|
|
lp = len(points)
|
|
|
|
for i in range(len(points)):
|
|
# get normalized orthogonals of both segments
|
|
v1 = vorthogonal(normalize(vdiff(points[i - 1], points[i])))
|
|
v2 = vorthogonal(normalize(vdiff(points[i], points[(i + 1) % lp])))
|
|
# direction the point has to move
|
|
d = normalize(vadd(v1, v2))
|
|
# cos of the half the angle between the segments
|
|
cos_alpha = dotproduct(v1, d)
|
|
result.append(vadd(points[i], vscalmul(d, -k / cos_alpha)))
|
|
|
|
return result
|