1747 lines
56 KiB
Python
Executable File
1747 lines
56 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Copyright (C) 2013-2014 Florian Festi
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
try:
|
|
import cairocffi
|
|
|
|
cairocffi.install_as_pycairo()
|
|
except ImportError:
|
|
pass
|
|
import cairo
|
|
import math
|
|
import sys
|
|
import argparse
|
|
from argparse import ArgumentParser
|
|
import re
|
|
from functools import wraps
|
|
from xml.sax.saxutils import quoteattr
|
|
|
|
from boxes import edges
|
|
from boxes import formats
|
|
from boxes import svgutil
|
|
from boxes import gears
|
|
from boxes import pulley
|
|
from boxes import parts
|
|
|
|
|
|
### Helpers
|
|
|
|
def dist(dx, dy):
|
|
"""
|
|
Return distance
|
|
|
|
:param dx: delta x
|
|
:param dy: delat y
|
|
"""
|
|
return (dx * dx + dy * dy) ** 0.5
|
|
|
|
|
|
def restore(func):
|
|
"""
|
|
Wrapper: Restore coordiantes after function
|
|
|
|
:param func: function to wrap
|
|
|
|
"""
|
|
|
|
@wraps(func)
|
|
def f(self, *args, **kw):
|
|
self.ctx.save()
|
|
pt = self.ctx.get_current_point()
|
|
func(self, *args, **kw)
|
|
self.ctx.restore()
|
|
self.ctx.move_to(*pt)
|
|
|
|
return f
|
|
|
|
|
|
def holeCol(func):
|
|
"""
|
|
Wrapper: color holes differently
|
|
|
|
:param func: function to wrap
|
|
|
|
"""
|
|
|
|
@wraps(func)
|
|
def f(self, *args, **kw):
|
|
self.ctx.stroke()
|
|
self.ctx.set_source_rgb(0.0, 0.0, 1.0)
|
|
func(self, *args, **kw)
|
|
self.ctx.stroke()
|
|
self.ctx.set_source_rgb(0.0, 0.0, 0.0)
|
|
|
|
return f
|
|
|
|
|
|
#############################################################################
|
|
### Building blocks
|
|
#############################################################################
|
|
|
|
class NutHole:
|
|
"""Draw a hex nut"""
|
|
sizes = {
|
|
"M1.6": (3.2, 1.3),
|
|
"M2": (4, 1.6),
|
|
"M2.5": (5, 2.0),
|
|
"M3": (5.5, 2.4),
|
|
"M4": (7, 3.2),
|
|
"M5": (8, 4.7),
|
|
"M6": (10, 5.2),
|
|
"M8": (13.7, 6.8),
|
|
"M10": (16, 8.4),
|
|
"M12": (18, 10.8),
|
|
"M14": (21, 12.8),
|
|
"M16": (24, 14.8),
|
|
"M20": (30, 18.0),
|
|
"M24": (36, 21.5),
|
|
"M30": (46, 25.6),
|
|
"M36": (55, 31),
|
|
"M42": (65, 34),
|
|
"M48": (75, 38),
|
|
"M56": (85, 45),
|
|
"M64": (95, 51),
|
|
}
|
|
|
|
def __init__(self, boxes, settings):
|
|
self.boxes = boxes
|
|
self.ctx = boxes.ctx
|
|
self.settings = settings
|
|
|
|
@restore
|
|
@holeCol
|
|
def __call__(self, size, x=0, y=0, angle=0):
|
|
size = self.sizes.get(size, (size,))[0]
|
|
side = size / 3 ** 0.5
|
|
self.boxes.moveTo(x, y, angle)
|
|
self.boxes.moveTo(-0.5 * side, 0.5 * size, angle)
|
|
for i in range(6):
|
|
self.boxes.edge(side)
|
|
self.boxes.corner(-60)
|
|
|
|
|
|
##############################################################################
|
|
### Argument types
|
|
##############################################################################
|
|
|
|
def argparseSections(s):
|
|
"""
|
|
Parse sections parameter
|
|
|
|
:param s: string to parse
|
|
|
|
"""
|
|
m = re.match(r"(\d+(\.\d+)?)/(\d+)", s)
|
|
if m:
|
|
n = int(m.group(3))
|
|
return [float(m.group(1)) / n] * n
|
|
m = re.match(r"(\d+(\.\d+)?)\*(\d+)", s)
|
|
if m:
|
|
n = int(m.group(3))
|
|
return [float(m.group(1))] * n
|
|
try:
|
|
return [float(part) for part in s.split(":")]
|
|
except ValueError:
|
|
raise argparse.ArgumentTypeError("Don't understand sections string")
|
|
|
|
|
|
class ArgparseEdgeType:
|
|
names = edges.getDescriptions()
|
|
edges = []
|
|
|
|
def __init__(self, edges=None):
|
|
if edges:
|
|
self.edges = list(edges)
|
|
|
|
def __call__(self, pattern):
|
|
if len(pattern) != 1:
|
|
raise ValueError("Edge type can only have one letter.")
|
|
if pattern not in self.edges:
|
|
raise ValueError("Use one of the following values: " +
|
|
", ".join(edges))
|
|
return pattern
|
|
|
|
def html(self, name, default):
|
|
options = "\n".join(
|
|
("""<option value="%s"%s>%s %s</option>""" %
|
|
(e, ' selected="selected"' if e == default else "",
|
|
e, self.names.get(e, "")) for e in self.edges))
|
|
return """<select name="%s" size="1">\n%s</select>\n""" % (name, options)
|
|
|
|
def inx(self, name, viewname, arg):
|
|
return (' <param name="%s" type="enum" gui-text="%s" gui-description=%s>\n' %
|
|
(name, viewname, quoteattr(arg.help or "")) +
|
|
''.join((' <item value="%s">%s %s</item>\n' % (
|
|
e, e, self.names.get(e, ""))
|
|
for e in self.edges)) +
|
|
' </param>\n')
|
|
|
|
class BoolArg:
|
|
def __call__(self, arg):
|
|
if not arg or arg.lower() in ("none", "0", "off", "false"):
|
|
return False
|
|
return True
|
|
|
|
def html(self, name, default):
|
|
return """<input name="%s" type="hidden" value="0">
|
|
<input name="%s" type="checkbox" value="1"%s>""" % \
|
|
(name, name, ' checked="checked"' if default else "")
|
|
|
|
boolarg = BoolArg()
|
|
|
|
##############################################################################
|
|
### Main class
|
|
##############################################################################
|
|
|
|
class Boxes:
|
|
"""Main class -- Generator should sub class this """
|
|
|
|
webinterface = True
|
|
ui_group = "Misc"
|
|
|
|
description = "" # Markdown syntax is supported
|
|
|
|
def __init__(self):
|
|
self.formats = formats.Formats()
|
|
description = self.__doc__
|
|
if self.description:
|
|
description += "\n\n" + self.description
|
|
self.argparser = ArgumentParser(description=description)
|
|
self.edgesettings = {}
|
|
self.inkscapefile = None
|
|
self.argparser._action_groups[1].title = self.__class__.__name__ + " Settings"
|
|
|
|
defaultgroup = self.argparser.add_argument_group(
|
|
"Default Settings")
|
|
defaultgroup.add_argument(
|
|
"--thickness", action="store", type=float, default=3.0,
|
|
help="thickness of the material")
|
|
defaultgroup.add_argument(
|
|
"--output", action="store", type=str, default="box.svg",
|
|
help="name of resulting file")
|
|
defaultgroup.add_argument(
|
|
"--format", action="store", type=str, default="svg",
|
|
choices=self.formats.getFormats(),
|
|
help="format of resulting file")
|
|
defaultgroup.add_argument(
|
|
"--tabs", action="store", type=float, default=0.0,
|
|
help="width of tabs holding th parts in place (not supported everywhere)")
|
|
defaultgroup.add_argument(
|
|
"--debug", action="store", type=boolarg, default=False,
|
|
help="print surrounding boxes for some structures")
|
|
defaultgroup.add_argument(
|
|
"--reference", action="store", type=float, default=100,
|
|
help="print reference rectangle with given length")
|
|
defaultgroup.add_argument(
|
|
"--burn", action="store", type=float, default=0.1,
|
|
help="burn correction in mm (bigger values for tighter fit)")
|
|
|
|
def open(self):
|
|
"""
|
|
Prepare for rendering
|
|
|
|
Call this function from your .render() method
|
|
"""
|
|
self.spacing = 2 * self.burn + 0.5 * self.thickness
|
|
|
|
self.bedBoltSettings = (3, 5.5, 2, 20, 15) # d, d_nut, h_nut, l, l1
|
|
self.hexHolesSettings = (5, 3, 'circle') # r, dist, style
|
|
self.surface, self.ctx = self.formats.getSurface(self.format, self.output)
|
|
self.ctx.set_line_width(max(2 * self.burn, 0.05))
|
|
self.ctx.select_font_face("sans-serif")
|
|
self._buildObjects()
|
|
if self.reference:
|
|
self.move(10, 10, "up", before=True)
|
|
self.ctx.rectangle(0, 0, self.reference, 10)
|
|
if self.reference < 40:
|
|
self.text("%.fmm" % self.reference, self.reference + 5, 5,
|
|
align="middle left")
|
|
else:
|
|
self.text("%.fmm" % self.reference, self.reference / 2.0, 5,
|
|
align="middle center")
|
|
self.move(10, 10, "up")
|
|
self.ctx.stroke()
|
|
|
|
def buildArgParser(self, *l, **kw):
|
|
"""
|
|
Add commonly used commandf line parameters
|
|
|
|
:param \*l: parameter names
|
|
|
|
"""
|
|
for arg in l:
|
|
kw[arg] = None
|
|
for arg, default in kw.items():
|
|
if arg == "x":
|
|
if default is None: default = 100.0
|
|
self.argparser.add_argument(
|
|
"--x", action="store", type=float, default=default,
|
|
help="inner width in mm (unless outside selected)")
|
|
elif arg == "y":
|
|
if default is None: default = 100.0
|
|
self.argparser.add_argument(
|
|
"--y", action="store", type=float, default=default,
|
|
help="inner depth in mm (unless outside selected)")
|
|
elif arg == "sx":
|
|
if default is None: default = "50*3"
|
|
self.argparser.add_argument(
|
|
"--sx", action="store", type=argparseSections,
|
|
default=default,
|
|
help="""sections left to right in mm. Possible formats: overallwidth/numberof sections e.g. "250/5"; sectionwidth*numberofsections e.g. "50*5"; section widths separated by ":" e.g. "30:25.5:70"
|
|
""")
|
|
elif arg == "sy":
|
|
if default is None: default = "50*3"
|
|
self.argparser.add_argument(
|
|
"--sy", action="store", type=argparseSections,
|
|
default=default,
|
|
help="""sections back to front in mm. See --sx for format""")
|
|
elif arg == "h":
|
|
if default is None: default = 100.0
|
|
self.argparser.add_argument(
|
|
"--h", action="store", type=float, default=default,
|
|
help="inner height in mm (unless outside selected)")
|
|
elif arg == "hi":
|
|
if default is None: default = 0.0
|
|
self.argparser.add_argument(
|
|
"--hi", action="store", type=float, default=default,
|
|
help="inner height of inner walls in mm (unless outside selected)(leave to zero for same as outer walls)")
|
|
elif arg == "bottom_edge":
|
|
if default is None: default = "h"
|
|
self.argparser.add_argument(
|
|
"--bottom_edge", action="store",
|
|
type=ArgparseEdgeType("Fhs"), choices=list("Fhs"),
|
|
default=default,
|
|
help="edge type for bottom edge")
|
|
elif arg == "top_edge":
|
|
if default is None: default = "e"
|
|
self.argparser.add_argument(
|
|
"--top_edge", action="store",
|
|
type=ArgparseEdgeType("efFcESikvfL"), choices=list("efFcESikvfL"),
|
|
default=default, help="edge type for top edge")
|
|
elif arg == "outside":
|
|
if default is None: default = True
|
|
self.argparser.add_argument(
|
|
"--outside", action="store", type=boolarg, default=default,
|
|
help="treat sizes as outside measurements that include the walls")
|
|
elif arg == "nema_mount":
|
|
if default is None: default = 23
|
|
self.argparser.add_argument(
|
|
"--nema_mount", action="store",
|
|
type=int, choices=list(sorted(self.nema_sizes.keys())),
|
|
default=default, help="NEMA size of motor")
|
|
else:
|
|
raise ValueError("No default for argument", arg)
|
|
|
|
def addSettingsArgs(self, settings, prefix=None, **defaults):
|
|
prefix = prefix or settings.__name__[:-len("Settings")]
|
|
settings.parserArguments(self.argparser, prefix, **defaults)
|
|
self.edgesettings[prefix] = {}
|
|
|
|
|
|
def parseArgs(self, args=None):
|
|
"""
|
|
Parse command line parameters
|
|
|
|
:param args: (Default value = None) parameters, None for using sys.argv
|
|
|
|
"""
|
|
if args is None:
|
|
args = sys.argv[1:]
|
|
if len(args) > 1 and args[-1][0] != "-":
|
|
self.inkscapefile = args[-1]
|
|
del args[-1]
|
|
args = [a for a in args if not a.startswith('--tab=')]
|
|
for key, value in vars(self.argparser.parse_args(args=args)).items():
|
|
# treat edge settings separately
|
|
for setting in self.edgesettings:
|
|
if key.startswith(setting + '_'):
|
|
self.edgesettings[setting][key[len(setting)+1:]] = value
|
|
continue
|
|
setattr(self, key, value)
|
|
|
|
# Change file ending to format if not given explicitly
|
|
if getattr(self, 'output', None) == 'box.svg':
|
|
self.output = 'box.' + getattr(self, "format", "svg")
|
|
|
|
def addPart(self, part, name=None):
|
|
"""
|
|
Add Edge or other part instance to this one and add it as attribute
|
|
|
|
:param part: Callable
|
|
:param name: (Default value = None) attribute name (__name__ as default)
|
|
|
|
"""
|
|
if name is None:
|
|
name = part.__class__.__name__
|
|
name = name[0].lower() + name[1:]
|
|
# if not hasattr(self, name):
|
|
if isinstance(part, edges.BaseEdge):
|
|
self.edges[part.char] = part
|
|
else:
|
|
setattr(self, name, part)
|
|
|
|
def addParts(self, parts):
|
|
for part in parts:
|
|
self.addPart(part)
|
|
|
|
def _buildObjects(self):
|
|
"""Add default edges and parts """
|
|
self.edges = {}
|
|
self.addPart(edges.Edge(self, None))
|
|
self.addPart(edges.OutSetEdge(self, None))
|
|
edges.GripSettings(self.thickness).edgeObjects(self)
|
|
|
|
# Finger joints
|
|
# Share settings object
|
|
s = edges.FingerJointSettings(self.thickness, True,
|
|
**self.edgesettings.get("FingerJoint", {}))
|
|
s.edgeObjects(self)
|
|
self.addPart(edges.FingerHoles(self, s), name="fingerHolesAt")
|
|
# Stackable
|
|
edges.StackableSettings(self.thickness, True,
|
|
**self.edgesettings.get("Stackable", {})).edgeObjects(self)
|
|
# Dove tail joints
|
|
edges.DoveTailSettings(self.thickness, True,
|
|
**self.edgesettings.get("DoveTail", {})).edgeObjects(self)
|
|
# Flex
|
|
s = edges.FlexSettings(self.thickness, True,
|
|
**self.edgesettings.get("Flex", {}))
|
|
self.addPart(edges.FlexEdge(self, s))
|
|
# Clickable
|
|
edges.ClickSettings(self.thickness, True,
|
|
**self.edgesettings.get("Click", {})).edgeObjects(self)
|
|
# Hinges
|
|
edges.HingeSettings(self.thickness, True,
|
|
**self.edgesettings.get("Hinge", {})).edgeObjects(self)
|
|
edges.ChestHingeSettings(self.thickness, True,
|
|
**self.edgesettings.get("ChestHinge", {})).edgeObjects(self)
|
|
edges.CabinetHingeSettings(self.thickness, True,
|
|
**self.edgesettings.get("CabinetHinge", {})).edgeObjects(self)
|
|
# Sliding Lid
|
|
edges.LidSettings(self.thickness, True,
|
|
**self.edgesettings.get("Lid", {})).edgeObjects(self)
|
|
|
|
# Nuts
|
|
self.addPart(NutHole(self, None))
|
|
# Gears
|
|
self.addPart(gears.Gears(self))
|
|
s = edges.GearSettings(self.thickness, True,
|
|
**self.edgesettings.get("Gear", {}))
|
|
self.addPart(edges.RackEdge(self, s))
|
|
self.addPart(pulley.Pulley(self))
|
|
self.addPart(parts.Parts(self))
|
|
|
|
def adjustSize(self, l, e1=True, e2=True):
|
|
try:
|
|
total = sum(l)
|
|
walls = (len(l) - 1) * self.thickness
|
|
except TypeError:
|
|
total = l
|
|
walls = 0
|
|
|
|
if isinstance(e1, edges.BaseEdge):
|
|
walls += e1.startwidth() + e1.margin()
|
|
elif e1:
|
|
walls += self.thickness
|
|
|
|
if isinstance(e2, edges.BaseEdge):
|
|
walls += e2.startwidth + e2.margin()
|
|
elif e2:
|
|
walls += self.thickness
|
|
|
|
try:
|
|
if total > 0.0:
|
|
factor = (total - walls) / total
|
|
else:
|
|
factor = 1.0
|
|
return [s * factor for s in l]
|
|
except TypeError:
|
|
return l - walls
|
|
|
|
def render(self):
|
|
"""Implement this method in your sub class.
|
|
|
|
You will typically need to call .parseArgs() before calling this one"""
|
|
self.open()
|
|
# Change settings and creat new Edges and part classes here
|
|
raise NotImplemented
|
|
self.close()
|
|
|
|
def cc(self, callback, number, x=0.0, y=None):
|
|
"""Call callback from edge of a part
|
|
|
|
:param callback: callback (callable or list of callables)
|
|
:param number: number of the callback
|
|
:param x: (Default value = 0.0) x position to be call on
|
|
:param y: (Default value = None) y position to be called on (default does burn correction)
|
|
|
|
"""
|
|
if y is None:
|
|
y = self.burn
|
|
|
|
if hasattr(callback, '__getitem__'):
|
|
try:
|
|
callback = callback[number]
|
|
number = None
|
|
except (KeyError, IndexError):
|
|
pass
|
|
|
|
if callback and callable(callback):
|
|
self.ctx.save()
|
|
self.moveTo(x, y)
|
|
if number is None:
|
|
callback()
|
|
else:
|
|
callback(number)
|
|
self.ctx.restore()
|
|
self.ctx.move_to(0, 0)
|
|
|
|
def getEntry(self, param, idx):
|
|
"""
|
|
Get entry from list or items itself
|
|
|
|
:param param: list or item
|
|
:param idx: index in list
|
|
|
|
"""
|
|
if isinstance(param, list):
|
|
if len(param) > idx:
|
|
return param[idx]
|
|
else:
|
|
return None
|
|
else:
|
|
return param
|
|
|
|
def close(self):
|
|
"""Finish rendering
|
|
|
|
Call at the end of your .render() method"""
|
|
self.ctx.stroke()
|
|
self.surface.flush()
|
|
self.surface.finish()
|
|
|
|
self.formats.convert(self.output, self.format)
|
|
if self.inkscapefile:
|
|
try:
|
|
out = sys.stdout.buffer
|
|
except AttributeError:
|
|
out= sys.stdout
|
|
svgutil.svgMerge(self.output, self.inkscapefile, out)
|
|
|
|
############################################################
|
|
### Turtle graphics commands
|
|
############################################################
|
|
|
|
def corner(self, degrees, radius=0, tabs=0):
|
|
"""
|
|
Draw a corner
|
|
|
|
This is what does the burn corrections
|
|
|
|
:param degrees: angle
|
|
:param radius: (Default value = 0)
|
|
|
|
"""
|
|
|
|
rad = degrees * math.pi / 180
|
|
|
|
if tabs and self.tabs:
|
|
if degrees > 0:
|
|
r_ = radius + self.burn
|
|
tabrad = self.tabs / r_
|
|
else:
|
|
r_ = radius - self.burn
|
|
tabrad = -self.tabs / r_
|
|
|
|
length = abs(r_ * rad)
|
|
tabs = min(tabs, max(1, int(abs(length) // (tabs*3*self.tabs))))
|
|
l = (length - tabs * self.tabs) / tabs
|
|
lang = math.degrees(l / r_)
|
|
if degrees < 0:
|
|
lang = -lang
|
|
print(degrees, radius, l, lang, tabs, math.degrees(tabrad))
|
|
self.corner(lang/2., radius)
|
|
for i in range(tabs-1):
|
|
self.moveArc(math.degrees(tabrad), r_)
|
|
self.corner(lang, radius)
|
|
if tabs:
|
|
self.moveArc(math.degrees(tabrad), r_)
|
|
self.corner(lang/2., radius)
|
|
return
|
|
|
|
if radius > 0.5* self.thickness and abs(degrees) > 36:
|
|
steps = int(abs(degrees)/ 36.) + 1
|
|
for i in range(steps):
|
|
self.corner(float(degrees)/steps, radius)
|
|
return
|
|
|
|
if degrees > 0:
|
|
self.ctx.arc(0, radius + self.burn, radius + self.burn,
|
|
-0.5 * math.pi, rad - 0.5 * math.pi)
|
|
elif radius > self.burn:
|
|
self.ctx.arc_negative(0, -(radius - self.burn), radius - self.burn,
|
|
0.5 * math.pi, rad + 0.5 * math.pi)
|
|
else: # not rounded inner corner
|
|
self.ctx.arc_negative(0, self.burn - radius, self.burn - radius,
|
|
-0.5 * math.pi, -0.5 * math.pi + rad)
|
|
|
|
self.continueDirection(rad)
|
|
|
|
def edge(self, length, tabs=0):
|
|
"""
|
|
Simple line
|
|
:param length: length in mm
|
|
|
|
"""
|
|
self.ctx.move_to(0, 0)
|
|
if tabs and self.tabs:
|
|
if self.tabs > length:
|
|
self.ctx.move_to(length, 0)
|
|
else:
|
|
tabs = min(tabs, max(1, int(length // (tabs*3*self.tabs))))
|
|
l = (length - tabs * self.tabs) / tabs
|
|
self.ctx.line_to(0.5*l, 0)
|
|
for i in range(tabs-1):
|
|
self.ctx.move_to((i+0.5)*l+self.tabs, 0)
|
|
self.ctx.line_to((i+0.5)*l+self.tabs+l, 0)
|
|
if tabs == 1:
|
|
self.ctx.move_to((tabs-0.5)*l+self.tabs, 0)
|
|
else:
|
|
self.ctx.move_to((tabs-0.5)*l+2*self.tabs, 0)
|
|
|
|
self.ctx.line_to(length, 0)
|
|
else:
|
|
self.ctx.line_to(length, 0)
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
|
|
def curveTo(self, x1, y1, x2, y2, x3, y3):
|
|
"""control point 1, control point 2, end point
|
|
|
|
:param x1:
|
|
:param y1:
|
|
:param x2:
|
|
:param y2:
|
|
:param x3:
|
|
:param y3:
|
|
|
|
"""
|
|
self.ctx.curve_to(x1, y1, x2, y2, x3, y3)
|
|
dx = x3 - x2
|
|
dy = y3 - y2
|
|
rad = math.atan2(dy, dx)
|
|
self.continueDirection(rad)
|
|
|
|
def polyline(self, *args):
|
|
"""
|
|
Draw multiple connected lines
|
|
|
|
:param \*args: Alternating length in mm and angle. angle may be tuple
|
|
(angle, radius)
|
|
|
|
"""
|
|
for i, arg in enumerate(args):
|
|
if i % 2:
|
|
if isinstance(arg, tuple):
|
|
self.corner(*arg)
|
|
else:
|
|
self.corner(arg)
|
|
else:
|
|
if isinstance(arg, tuple):
|
|
self.edge(*arg)
|
|
else:
|
|
self.edge(arg)
|
|
|
|
def bedBoltHole(self, length, bedBoltSettings=None, tabs=0):
|
|
"""
|
|
Draw an edge with slot for a bed bolt
|
|
|
|
:param length: length of the edge in mm
|
|
:param bedBoltSettings: (Default value = None) Dimmensions of the slot
|
|
|
|
"""
|
|
d, d_nut, h_nut, l, l1 = bedBoltSettings or self.bedBoltSettings
|
|
self.edge((length - d) / 2.0, tabs=tabs//2)
|
|
self.corner(90)
|
|
self.edge(l1)
|
|
self.corner(90)
|
|
self.edge((d_nut - d) / 2.0)
|
|
self.corner(-90)
|
|
self.edge(h_nut)
|
|
self.corner(-90)
|
|
self.edge((d_nut - d) / 2.0)
|
|
self.corner(90)
|
|
self.edge(l - l1 - h_nut)
|
|
self.corner(-90)
|
|
self.edge(d)
|
|
self.corner(-90)
|
|
self.edge(l - l1 - h_nut)
|
|
self.corner(90)
|
|
self.edge((d_nut - d) / 2.0)
|
|
self.corner(-90)
|
|
self.edge(h_nut)
|
|
self.corner(-90)
|
|
self.edge((d_nut - d) / 2.0)
|
|
self.corner(90)
|
|
self.edge(l1)
|
|
self.corner(90)
|
|
self.edge((length - d) / 2.0, tabs=tabs-(tabs//2))
|
|
|
|
def edgeCorner(self, edge1, edge2, angle=90):
|
|
"""Make a corner between two Edges. Take width of edges into account"""
|
|
edge1 = self.edges.get(edge1, edge1)
|
|
edge2 = self.edges.get(edge2, edge2)
|
|
|
|
self.edge(edge2.startwidth() * math.tan(math.radians(angle/2.)))
|
|
self.corner(angle)
|
|
self.edge(edge1.endwidth() * math.tan(math.radians(angle/2.)))
|
|
|
|
def regularPolygon(self, corners=3, radius=None, h=None, side=None):
|
|
"""Give messures of a regular polygone
|
|
:param corners: number of corners of the polygone
|
|
:param radius: distance center to one of the corners
|
|
:param h: distance center to one of the sides (height of sector)
|
|
:param side: length of one side
|
|
:return (radius, h, side)
|
|
"""
|
|
if radius:
|
|
side = 2 * math.sin(math.radians(180.0/corners)) * radius
|
|
h = radius * math.cos(math.radians(180.0/corners))
|
|
elif h:
|
|
side = 2 * math.tan(math.radians(180.0/corners)) * h
|
|
radius = ((side/2.)**2+h**2)**0.5
|
|
elif side:
|
|
h = 0.5 * side * math.tan(math.radians(90-180./corners))
|
|
radius = ((side/2.)**2+h**2)**0.5
|
|
|
|
return radius, h, side
|
|
|
|
@restore
|
|
def regularPolygonAt(self, x, y, corners, angle=0, r=None, h=None, side=None):
|
|
"""Draw regular polygone"""
|
|
self.moveTo(x, y, angle)
|
|
r, h, side = self.regularPolygon(corners, r, h, side)
|
|
self.moveTo(-side/2.0, -h-self.burn)
|
|
for i in range(corners):
|
|
self.edge(side)
|
|
self.corner(360./corners)
|
|
|
|
def regularPolygonWall(self, corners=3, r=None, h=None, side=None,
|
|
edges='e', hole=None, callback=None, move=None):
|
|
"""Create regular polygone as a wall
|
|
:param corners: number of corners of the polygone
|
|
:param radius: distance center to one of the corners
|
|
:param h: distance center to one of the sides (height of sector)
|
|
:param side: length of one side
|
|
:param edges: (Default value = "e", may be string/list of length corners)
|
|
:param hole: diameter of central hole (Default value = 0)
|
|
:param callback: (Default value = None, middle=0, then sides=1..)
|
|
:param move: (Default value = None)
|
|
"""
|
|
r, h, side = self.regularPolygon(corners, r, h, side)
|
|
|
|
t = self.thickness
|
|
|
|
if corners % 2:
|
|
th = r + h + 2*t
|
|
else:
|
|
th = 2*h + 2*t
|
|
tw = 2*r + 3*t
|
|
|
|
if self.move(tw, th, move, before=True):
|
|
return
|
|
|
|
self.moveTo(r-0.5*side, 0)
|
|
|
|
if not hasattr(edges, "__getitem__") or len(edges) == 1:
|
|
edges = [edges] * corners
|
|
edges = [self.edges.get(e, e) for e in edges]
|
|
edges += edges # append for wrapping around
|
|
|
|
if hole:
|
|
self.hole(side/2., h+edges[0].startwidth() + self.burn, hole/2.)
|
|
self.cc(callback, 0, side/2., h+edges[0].startwidth() + self.burn)
|
|
for i in range(corners):
|
|
self.cc(callback, i+1, 0, edges[i].startwidth() + self.burn)
|
|
edges[i](side)
|
|
self.edgeCorner(edges[i], edges[i+1], 360.0/corners)
|
|
|
|
self.ctx.stroke()
|
|
self.move(tw, th, move)
|
|
|
|
def grip(self, length, depth):
|
|
"""Corrugated edge useful as an gipping area
|
|
|
|
:param length: length
|
|
:param depth: depth of the grooves
|
|
|
|
"""
|
|
grooves = int(length // (depth * 2.0)) + 1
|
|
depth = length / grooves / 4.0
|
|
for groove in range(grooves):
|
|
self.corner(90, depth)
|
|
self.corner(-180, depth)
|
|
self.corner(90, depth)
|
|
|
|
def _latchHole(self, length):
|
|
"""
|
|
|
|
:param length:
|
|
|
|
"""
|
|
self.edge(1.1 * self.thickness)
|
|
self.corner(-90)
|
|
self.edge(length / 2.0 + 0.2 * self.thickness)
|
|
self.corner(-90)
|
|
self.edge(1.1 * self.thickness)
|
|
|
|
def _latchGrip(self, length):
|
|
"""
|
|
|
|
:param length:
|
|
|
|
"""
|
|
self.corner(90, self.thickness / 4.0)
|
|
self.grip(length / 2.0 - self.thickness / 2.0 - 0.2 * self.thickness, self.thickness / 2.0)
|
|
self.corner(90, self.thickness / 4.0)
|
|
|
|
def latch(self, length, positive=True, reverse=False):
|
|
"""Latch to fix a flex box door to the box
|
|
|
|
:param length: length in mm
|
|
:param positive: (Default value = True) False: Door side; True: Box side
|
|
:param reverse: (Default value = False) True when running away from the latch
|
|
|
|
"""
|
|
if positive:
|
|
if reverse:
|
|
self.edge(length / 2.0)
|
|
self.corner(-90)
|
|
self.edge(self.thickness)
|
|
self.corner(90)
|
|
self.edge(length / 2.0)
|
|
self.corner(90)
|
|
self.edge(self.thickness)
|
|
self.corner(-90)
|
|
if not reverse:
|
|
self.edge(length / 2.0)
|
|
else:
|
|
if reverse:
|
|
self._latchGrip(length)
|
|
else:
|
|
self.corner(90)
|
|
self._latchHole(length)
|
|
if not reverse:
|
|
self._latchGrip(length)
|
|
else:
|
|
self.corner(90)
|
|
|
|
def handle(self, x, h, hl, r=30):
|
|
"""Creates an Edge with a handle
|
|
|
|
:param x: width in mm
|
|
:param h: height in mm
|
|
:param hl: height if th grip hole
|
|
:param r: (Default value = 30) radius of the corners
|
|
|
|
"""
|
|
d = (x - hl - 2 * r) / 2.0
|
|
|
|
self.ctx.save()
|
|
|
|
# Hole
|
|
self.moveTo(d + 2 * r, 0)
|
|
self.edge(hl - 2 * r)
|
|
self.corner(-90, r)
|
|
self.edge(h - 3 * r)
|
|
self.corner(-90, r)
|
|
self.edge(hl - 2 * r)
|
|
self.corner(-90, r)
|
|
self.edge(h - 3 * r)
|
|
self.corner(-90, r)
|
|
|
|
self.ctx.restore()
|
|
self.moveTo(0, 0)
|
|
|
|
self.curveTo(d, 0, d, 0, d, -h + r)
|
|
self.curveTo(r, 0, r, 0, r, r)
|
|
self.edge(hl)
|
|
self.curveTo(r, 0, r, 0, r, r)
|
|
self.curveTo(h - r, 0, h - r, 0, h - r, -d)
|
|
|
|
### Navigation
|
|
|
|
def moveTo(self, x, y=0.0, degrees=0):
|
|
"""
|
|
Move coordinate system to given point
|
|
|
|
:param x:
|
|
:param y: (Default value = 0.0)
|
|
:param degrees: (Default value = 0)
|
|
|
|
"""
|
|
self.ctx.move_to(0, 0)
|
|
self.ctx.translate(x, y)
|
|
self.ctx.rotate(degrees * math.pi / 180.0)
|
|
self.ctx.move_to(0, 0)
|
|
|
|
def moveArc(self, angle, r=0.0):
|
|
"""
|
|
:param angle:
|
|
:param r: (Default value = 0.0)
|
|
"""
|
|
if r < 0:
|
|
r = -r
|
|
angle = -angle
|
|
|
|
rad = math.radians(angle)
|
|
if angle > 0:
|
|
self.moveTo(r*math.sin(rad),
|
|
r*(1-math.cos(rad)), angle)
|
|
else:
|
|
self.moveTo(r*math.sin(-rad),
|
|
-r*(1-math.cos(rad)), angle)
|
|
|
|
def continueDirection(self, angle=0):
|
|
"""
|
|
Set coordinate system to current position (end point)
|
|
|
|
:param angle: (Default value = 0) heading
|
|
|
|
"""
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
self.ctx.rotate(angle)
|
|
|
|
def move(self, x, y, where, before=False):
|
|
"""Intended to be used by parts
|
|
where can be combinations of "up", "down", "left", "right" and "only"
|
|
when "only" is included the move is only done when before is True
|
|
The function returns whether actual drawing of the part
|
|
should be omited.
|
|
|
|
:param x: width of part
|
|
:param y: height of part
|
|
:param where: which direction to move
|
|
:param before: (Default value = False) called before or after part being drawn
|
|
|
|
"""
|
|
if not where:
|
|
where = ""
|
|
|
|
terms = where.split()
|
|
dontdraw = before and "only" in terms
|
|
|
|
x += self.spacing
|
|
y += self.spacing
|
|
moves = {
|
|
"up": (0, y, False),
|
|
"down": (0, -y, True),
|
|
"left": (-x, 0, True),
|
|
"right": (x, 0, False),
|
|
"only": (0, 0, None),
|
|
}
|
|
|
|
if not before:
|
|
self.ctx.stroke()
|
|
# restore position
|
|
self.ctx.restore()
|
|
|
|
for term in terms:
|
|
if not term in moves:
|
|
raise ValueError("Unknown direction: '%s'" % term)
|
|
x, y, movebeforeprint = moves[term]
|
|
if movebeforeprint and before:
|
|
self.moveTo(x, y)
|
|
elif (not movebeforeprint and not before) or dontdraw:
|
|
self.moveTo(x, y)
|
|
if not dontdraw:
|
|
if before:
|
|
# save position
|
|
self.ctx.save()
|
|
self.moveTo(self.spacing / 2.0, self.spacing / 2.0)
|
|
return dontdraw
|
|
|
|
@restore
|
|
def circle(self, x, y, r):
|
|
"""
|
|
Draw a round disc
|
|
|
|
:param x: position
|
|
:param y: postion
|
|
:param r: radius
|
|
|
|
"""
|
|
r += self.burn
|
|
self.moveTo(x + r, y)
|
|
a = 0
|
|
n = 10
|
|
da = 2 * math.pi / n
|
|
for i in range(n):
|
|
self.ctx.arc(-r, 0, r, a, a+da)
|
|
a += da
|
|
self.ctx.stroke()
|
|
|
|
@restore
|
|
@holeCol
|
|
def hole(self, x, y, r=0.0, d=0.0, tabs=0):
|
|
"""
|
|
Draw a round hole
|
|
|
|
:param x: position
|
|
:param y: postion
|
|
:param r: radius
|
|
|
|
"""
|
|
|
|
if not r:
|
|
r = d / 2.0
|
|
if r < self.burn:
|
|
r = self.burn + 1E-9
|
|
r_ = r - self.burn
|
|
self.moveTo(x + r_, y, -90)
|
|
self.corner(-360, r, tabs)
|
|
|
|
@restore
|
|
@holeCol
|
|
def rectangularHole(self, x, y, dx, dy, r=0):
|
|
"""
|
|
Draw an rectangulat hole
|
|
|
|
:param x: position
|
|
:param y: position
|
|
:param dx: width
|
|
:param dy: height
|
|
:param r: (Default value = 0) radius of the corners
|
|
|
|
"""
|
|
self.moveTo(x + r - dx / 2.0, y - dy / 2.0, 180)
|
|
for d in (dy, dx, dy, dx):
|
|
self.corner(-90, r)
|
|
self.edge(d - 2 * r)
|
|
|
|
@restore
|
|
@holeCol
|
|
def dHole(self, x, y, r=None, d=None, w=None, rel_w=0.75, angle=0):
|
|
if r is None:
|
|
r = d / 2.0
|
|
if w is None:
|
|
w = 2.0 * r * rel_w
|
|
w -= r
|
|
if r < 0.0:
|
|
return
|
|
if abs(w) > r:
|
|
return self.hole(x, y, r)
|
|
|
|
a = math.degrees(math.acos(w / r))
|
|
self.moveTo(x, y, angle-a)
|
|
self.moveTo(r-self.burn, 0, -90)
|
|
self.corner(-360+2*a, r)
|
|
self.corner(-a)
|
|
self.edge(2*r*math.sin(math.radians(a)))
|
|
|
|
@restore
|
|
@holeCol
|
|
def flatHole(self, x, y, r=None, d=None, w=None, rel_w=0.75, angle=0):
|
|
if r is None:
|
|
r = d / 2.0
|
|
if w is None:
|
|
w = r * rel_w
|
|
else:
|
|
w = w / 2.0
|
|
|
|
if r < 0.0:
|
|
return
|
|
if abs(w) > r:
|
|
return self.hole(x, y, r)
|
|
|
|
a = math.degrees(math.acos(w / r))
|
|
self.moveTo(x, y, angle-a)
|
|
self.moveTo(r-self.burn, 0, -90)
|
|
for i in range(2):
|
|
self.corner(-180+2*a, r)
|
|
self.corner(-a)
|
|
self.edge(2*r*math.sin(math.radians(a)))
|
|
self.corner(-a)
|
|
|
|
@restore
|
|
def text(self, text, x=0, y=0, angle=0, align="", fontsize=10, color=[0.0, 0.0, 0.0]):
|
|
"""
|
|
Draw text
|
|
|
|
:param text: text to render
|
|
:param x: (Default value = 0)
|
|
:param y: (Default value = 0)
|
|
:param angle: (Default value = 0)
|
|
:param align: (Default value = "") string with combinations of (top|middle|bottom) and (left|center|right) separated by a space
|
|
|
|
"""
|
|
self.ctx.set_font_size(fontsize)
|
|
self.moveTo(x, y, angle)
|
|
text = text.split("\n")
|
|
width = lheight = 0.0
|
|
for line in text:
|
|
(tx, ty, w, h, dx, dy) = self.ctx.text_extents(line)
|
|
print(tx, ty, w, h, dx, dy)
|
|
lheight = max(lheight, h)
|
|
width = max(width, w)
|
|
|
|
lines = len(text)
|
|
height = lines * lheight + (lines - 1) * 0.4 * lheight
|
|
align = align.split()
|
|
moves = {
|
|
"top": (0, -height),
|
|
"middle": (0, -0.5 * height),
|
|
"bottom": (0, 0),
|
|
"left": (0, 0),
|
|
"center": (-0.5 * width, 0),
|
|
"right": (-width, 0),
|
|
}
|
|
for a in align:
|
|
if a in moves:
|
|
self.moveTo(*moves[a])
|
|
else:
|
|
raise ValueError("Unknown alignment: %s" % align)
|
|
|
|
self.ctx.stroke()
|
|
self.ctx.set_source_rgb(1.0, 1.0, 1.0)
|
|
self.ctx.rectangle(0, 0, width, height)
|
|
self.ctx.stroke()
|
|
self.ctx.set_source_rgb(*color)
|
|
self.ctx.scale(1, -1)
|
|
for line in reversed(text):
|
|
self.ctx.show_text(line)
|
|
self.moveTo(0, 1.4 * -lheight)
|
|
self.ctx.set_source_rgb(0.0, 0.0, 0.0)
|
|
self.ctx.set_font_size(10)
|
|
|
|
tx_sizes = {
|
|
1 : 0.61,
|
|
2 : 0.70,
|
|
3 : 0.82,
|
|
4 : 0.96,
|
|
5 : 1.06,
|
|
6 : 1.27,
|
|
7 : 1.49,
|
|
8 : 1.75,
|
|
9 : 1.87,
|
|
10 : 2.05,
|
|
15 : 2.40,
|
|
20 : 2.85,
|
|
25 : 3.25,
|
|
30 : 4.05,
|
|
40 : 4.85,
|
|
45 : 5.64,
|
|
50 : 6.45,
|
|
55 : 8.05,
|
|
60 : 9.60,
|
|
70 : 11.20,
|
|
80 : 12.80,
|
|
90 : 14.40,
|
|
100 : 16.00,
|
|
}
|
|
|
|
@restore
|
|
@holeCol
|
|
def TX(self, size, x=0, y=0, angle=0):
|
|
self.moveTo(x, y, angle)
|
|
|
|
size = self.tx_sizes.get(size, 0)
|
|
ri = 0.5 * size * math.tan(math.radians(30))
|
|
ro = ri * (2**0.5-1)
|
|
|
|
self.moveTo(size * 0.5 - self.burn, 0, -90)
|
|
for i in range(6):
|
|
self.corner(45, ri)
|
|
self.corner(-150, ro)
|
|
self.corner(45, ri)
|
|
|
|
nema_sizes = {
|
|
# motor,flange, holes, screws
|
|
8: (20.3, 16, 15.4, 3),
|
|
11: (28.2, 22, 23, 4),
|
|
14: (35.2, 22, 26, 4),
|
|
16: (39.2, 22, 31, 4),
|
|
17: (42.2, 22, 31, 4),
|
|
23: (56.4, 38.1, 47.1, 5.2),
|
|
24: (60, 36, 49.8, 5.1),
|
|
34: (86.3, 73, 69.8, 6.6),
|
|
42: (110, 55.5, 89, 8.5),
|
|
}
|
|
|
|
@restore
|
|
def NEMA(self, size, x=0, y=0, angle=0):
|
|
"""Draw holes for mounting a NEMA stepper motor
|
|
|
|
:param size: Nominal size in tenths of inches
|
|
:param x: (Default value = 0)
|
|
:param y: (Default value = 0)
|
|
:param angle: (Default value = 0)
|
|
|
|
"""
|
|
width, flange, holedistance, diameter = self.nema_sizes[size]
|
|
self.moveTo(x, y, angle)
|
|
if self.debug:
|
|
self.rectangularHole(0, 0, width, width)
|
|
self.hole(0, 0, 0.5 * flange)
|
|
for x in (-1, 1):
|
|
for y in (-1, 1):
|
|
self.hole(x * 0.5 * holedistance,
|
|
y * 0.5 * holedistance,
|
|
0.5 * diameter)
|
|
|
|
# hexHoles
|
|
|
|
def hexHolesRectangle(self, x, y, settings=None, skip=None):
|
|
"""Fills a rectangle with holes in a hex pattern.
|
|
|
|
Settings have:
|
|
r : radius of holes
|
|
b : space between holes
|
|
style : what types of holes (not yet implemented)
|
|
|
|
:param x: width
|
|
:param y: height
|
|
:param settings: (Default value = None)
|
|
:param skip: (Default value = None) function to check if hole should be present
|
|
gets x, y, r, b, posx, posy
|
|
|
|
|
|
"""
|
|
if settings is None:
|
|
settings = self.hexHolesSettings
|
|
r, b, style = settings
|
|
|
|
w = r + b / 2.0
|
|
dist = w * math.cos(math.pi / 6.0)
|
|
|
|
# how many half circles do fit
|
|
cx = int((x - 2 * r) // (w)) + 2
|
|
cy = int((y - 2 * r) // (dist)) + 2
|
|
|
|
# what's left on the sides
|
|
lx = (x - (2 * r + (cx - 2) * w)) / 2.0
|
|
ly = (y - (2 * r + ((cy // 2) * 2) * dist - 2 * dist)) / 2.0
|
|
|
|
for i in range(cy // 2):
|
|
for j in range((cx - (i % 2)) // 2):
|
|
px = 2 * j * w + r + lx
|
|
py = i * 2 * dist + r + ly
|
|
if i % 2:
|
|
px += w
|
|
if skip and skip(x, y, r, b, px, py):
|
|
continue
|
|
self.hole(px, py, r)
|
|
|
|
def __skipcircle(self, x, y, r, b, posx, posy):
|
|
cx, cy = x / 2.0, y / 2.0
|
|
return (dist(posx - cx, posy - cy) > (cx - r))
|
|
|
|
def hexHolesCircle(self, d, settings=None):
|
|
"""
|
|
Fill circle with holes in a hex pattern
|
|
|
|
:param d: diameter of the circle
|
|
:param settings: (Default value = None)
|
|
|
|
"""
|
|
d2 = d / 2.0
|
|
self.hexHolesRectangle(d, d, settings=settings, skip=self.__skipcircle)
|
|
|
|
def hexHolesPlate(self, x, y, rc, settings=None):
|
|
"""
|
|
Fill a plate with holes in a hex pattern
|
|
|
|
:param x: width
|
|
:param y: height
|
|
:param rc: radius of the corners
|
|
:param settings: (Default value = None)
|
|
|
|
"""
|
|
|
|
def skip(x, y, r, b, posx, posy):
|
|
"""
|
|
|
|
:param x:
|
|
:param y:
|
|
:param r:
|
|
:param b:
|
|
:param posx:
|
|
:param posy:
|
|
|
|
"""
|
|
posx = abs(posx - (x / 2.0))
|
|
posy = abs(posy - (y / 2.0))
|
|
|
|
wx = 0.5 * x - rc - r
|
|
wy = 0.5 * y - rc - r
|
|
|
|
if (posx <= wx) or (posy <= wx):
|
|
return 0
|
|
return dist(posx - wx, posy - wy) > rc
|
|
|
|
self.hexHolesRectangle(x, y, settings, skip=skip)
|
|
|
|
def hexHolesHex(self, h, settings=None, grow=None):
|
|
"""
|
|
Fill a hexagon with holes in a hex pattern
|
|
|
|
:param h: height
|
|
:param settings: (Default value = None)
|
|
:param grow: (Default value = None)
|
|
|
|
"""
|
|
if settings is None:
|
|
settings = self.hexHolesSettings
|
|
r, b, style = settings
|
|
|
|
self.ctx.rectangle(0, 0, h, h)
|
|
w = r + b / 2.0
|
|
dist = w * math.cos(math.pi / 6.0)
|
|
cy = 2 * int((h - 4 * dist) // (4 * w)) + 1
|
|
|
|
leftover = h - 2 * r - (cy - 1) * 2 * r
|
|
if grow == 'space ':
|
|
b += leftover / (cy - 1) / 2
|
|
|
|
# recalulate with adjusted values
|
|
w = r + b / 2.0
|
|
dist = w * math.cos(math.pi / 6.0)
|
|
|
|
self.moveTo(h / 2.0 - (cy // 2) * 2 * w, h / 2.0)
|
|
for j in range(cy):
|
|
self.hole(2 * j * w, 0, r)
|
|
for i in range(1, cy / 2 + 1):
|
|
for j in range(cy - i):
|
|
self.hole(j * 2 * w + i * w, i * 2 * dist, r)
|
|
self.hole(j * 2 * w + i * w, -i * 2 * dist, r)
|
|
|
|
def flex2D(self, x, y, width=1):
|
|
width *= self.thickness
|
|
cx = int(x // (5 * width))
|
|
wx = x / 5. / cx
|
|
cy = int(y // (5 * width))
|
|
wy = y / 5. / cy
|
|
|
|
armx = (4 * wx, 90, 4 * wy, 90, 2 * wx, 90, 2 * wy)
|
|
army = (4 * wy, 90, 4 * wx, 90, 2 * wy, 90, 2 * wx)
|
|
for i in range(cx):
|
|
for j in range(cy):
|
|
if (i + j) % 2:
|
|
self.ctx.save()
|
|
self.moveTo((5 * i) * wx, (5 * j) * wy)
|
|
self.polyline(*armx)
|
|
self.ctx.restore()
|
|
self.ctx.save()
|
|
self.moveTo((5 * i + 5) * wx, (5 * j + 5) * wy, -180)
|
|
self.polyline(*armx)
|
|
self.ctx.restore()
|
|
else:
|
|
self.ctx.save()
|
|
self.moveTo((5 * i + 5) * wx, (5 * j) * wy, 90)
|
|
self.polyline(*army)
|
|
self.ctx.restore()
|
|
self.ctx.save()
|
|
self.moveTo((5 * i) * wx, (5 * j + 5) * wy, -90)
|
|
self.polyline(*army)
|
|
self.ctx.restore()
|
|
self.ctx.stroke()
|
|
|
|
##################################################
|
|
### parts
|
|
##################################################
|
|
|
|
def roundedPlate(self, x, y, r, edge="f", callback=None,
|
|
holesMargin=None, holesSettings=None,
|
|
bedBolts=None, bedBoltSettings=None,
|
|
move=None):
|
|
"""Plate with rounded corner fitting to .surroundingWall()
|
|
|
|
First edge is split to have a joint in the middle of the side
|
|
callback is called at the beginning of the straight edges
|
|
0, 1 for the two part of the first edge, 2, 3, 4 for the others
|
|
|
|
:param x: width
|
|
:param y: hight
|
|
:param r: radius of the corners
|
|
:param callback: (Default value = None)
|
|
:param holesMargin: (Default value = None) set to get hex holes
|
|
:param holesSettings: (Default value = None)
|
|
:param bedBolts: (Default value = None)
|
|
:param bedBoltSettings: (Default value = None)
|
|
:param move: (Default value = None)
|
|
|
|
"""
|
|
|
|
overallwidth = x + 2 * self.edges[edge].spacing()
|
|
overallheight = y + 2 * self.edges[edge].spacing()
|
|
|
|
if self.move(overallwidth, overallheight, move, before=True):
|
|
return
|
|
|
|
lx = x - 2*r
|
|
ly = y - 2*r
|
|
r += self.edges[edge].startwidth()
|
|
|
|
self.moveTo(self.edges[edge].margin(),
|
|
self.edges[edge].margin())
|
|
self.moveTo(r, 0)
|
|
|
|
self.cc(callback, 0)
|
|
self.edges[edge](lx / 2.0 , bedBolts=self.getEntry(bedBolts, 0),
|
|
bedBoltSettings=self.getEntry(bedBoltSettings, 0))
|
|
self.cc(callback, 1)
|
|
self.edges[edge](lx / 2.0, bedBolts=self.getEntry(bedBolts, 1),
|
|
bedBoltSettings=self.getEntry(bedBoltSettings, 1))
|
|
for i, l in zip(range(3), (ly, lx, ly)):
|
|
self.corner(90, r)
|
|
self.cc(callback, i + 2)
|
|
self.edges[edge](l, bedBolts=self.getEntry(bedBolts, i + 2),
|
|
bedBoltSettings=self.getEntry(bedBoltSettings, i + 2))
|
|
self.corner(90, r)
|
|
|
|
self.ctx.restore()
|
|
self.ctx.save()
|
|
|
|
self.moveTo(self.edges[edge].margin(),
|
|
self.edges[edge].margin())
|
|
|
|
if holesMargin is not None:
|
|
self.moveTo(holesMargin, holesMargin)
|
|
if r > holesMargin:
|
|
r -= holesMargin
|
|
else:
|
|
r = 0
|
|
self.hexHolesPlate(x - 2 * holesMargin, y - 2 * holesMargin, r,
|
|
settings=holesSettings)
|
|
self.ctx.stroke()
|
|
self.move(overallwidth, overallheight, move)
|
|
|
|
def surroundingWall(self, x, y, r, h,
|
|
bottom='e', top='e',
|
|
left="D", right="d",
|
|
callback=None,
|
|
move=None):
|
|
"""h : inner height, not counting the joints
|
|
callback is called a beginn of the flat sides with
|
|
|
|
* 0 for right half of first x side;
|
|
* 1 and 3 for y sides;
|
|
* 2 for second x side
|
|
* 4 for second half of the first x side
|
|
|
|
:param x: width of matching roundedPlate
|
|
:param y: height of matching roundedPlate
|
|
:param r: corner radius of matching roundedPlate
|
|
:param h: height of the wall
|
|
:param bottom: (Default value = 'e') Edge type
|
|
:param top: (Default value = 'e') Edge type
|
|
:param callback: (Default value = None)
|
|
:param move: (Default value = None)
|
|
|
|
"""
|
|
c4 = (r + self.burn) * math.pi * 0.5 # circumference of quarter circle
|
|
c4 = c4 / self.edges["X"].settings.stretch
|
|
|
|
top = self.edges.get(top, top)
|
|
bottom = self.edges.get(bottom, bottom)
|
|
left = self.edges.get(left, left)
|
|
right = self.edges.get(right, right)
|
|
|
|
# XXX assumes startwidth == endwidth
|
|
topwidth = top.startwidth()
|
|
bottomwidth = bottom.startwidth()
|
|
|
|
overallwidth = 2 * x + 2 * y - 8 * r + 4 * c4 + \
|
|
self.edges["d"].spacing() + self.edges["D"].spacing()
|
|
overallheight = h + top.spacing() + bottom.spacing()
|
|
|
|
if self.move(overallwidth, overallheight, move, before=True):
|
|
return
|
|
|
|
self.moveTo(left.spacing(), bottom.margin())
|
|
|
|
self.cc(callback, 0, y=bottomwidth + self.burn)
|
|
bottom(x / 2.0 - r)
|
|
if (y - 2 * r) < 1E-3:
|
|
self.edges["X"](2 * c4, h + topwidth + bottomwidth)
|
|
self.cc(callback, 2, y=bottomwidth + self.burn)
|
|
bottom(x - 2 * r)
|
|
self.edges["X"](2 * c4, h + topwidth + bottomwidth)
|
|
self.cc(callback, 4, y=bottomwidth + self.burn)
|
|
else:
|
|
for i, l in zip(range(4), (y, x, y, 0)):
|
|
self.edges["X"](c4, h + topwidth + bottomwidth)
|
|
self.cc(callback, i + 1, y=bottomwidth + self.burn)
|
|
if i < 3:
|
|
bottom(l - 2 * r)
|
|
bottom(x / 2.0 - r)
|
|
|
|
self.edgeCorner(bottom, right, 90)
|
|
right(h)
|
|
self.edgeCorner(right, top, 90)
|
|
|
|
top(x / 2.0 - r)
|
|
for i, l in zip(range(4), (y, x, y, 0)):
|
|
self.edge(c4)
|
|
if i < 3:
|
|
top(l - 2 * r)
|
|
top(x / 2.0 - r)
|
|
|
|
self.edgeCorner(top, left, 90)
|
|
left(h)
|
|
self.edgeCorner(left, bottom, 90)
|
|
|
|
self.ctx.stroke()
|
|
|
|
self.move(overallwidth, overallheight, move)
|
|
|
|
def rectangularWall(self, x, y, edges="eeee",
|
|
ignore_widths=[],
|
|
holesMargin=None, holesSettings=None,
|
|
bedBolts=None, bedBoltSettings=None,
|
|
callback=None,
|
|
move=None):
|
|
"""
|
|
Rectangular wall for all kind of box like objects
|
|
|
|
:param x: width
|
|
:param y: height
|
|
:param edges: (Default value = "eeee") bottom, right, top, left
|
|
:param ignore_widths: list of edge_widths added to adjacent edge
|
|
:param holesMargin: (Default value = None)
|
|
:param holesSettings: (Default value = None)
|
|
:param bedBolts: (Default value = None)
|
|
:param bedBoltSettings: (Default value = None)
|
|
:param callback: (Default value = None)
|
|
:param move: (Default value = None)
|
|
|
|
"""
|
|
if len(edges) != 4:
|
|
raise ValueError("four edges required")
|
|
edges = [self.edges.get(e, e) for e in edges]
|
|
edges += edges # append for wrapping around
|
|
overallwidth = x + edges[-1].spacing() + edges[1].spacing()
|
|
overallheight = y + edges[0].spacing() + edges[2].spacing()
|
|
|
|
if self.move(overallwidth, overallheight, move, before=True):
|
|
return
|
|
|
|
if 7 not in ignore_widths:
|
|
self.moveTo(edges[-1].spacing())
|
|
if 6 not in ignore_widths:
|
|
self.moveTo(0, edges[0].margin())
|
|
for i, l in enumerate((x, y, x, y)):
|
|
self.cc(callback, i, y=edges[i].startwidth() + self.burn)
|
|
e1, e2 = edges[i], edges[i + 1]
|
|
if (2*i-1 in ignore_widths or
|
|
2*i-1+8 in ignore_widths):
|
|
l += edges[i-1].endwidth()
|
|
if 2*i in ignore_widths:
|
|
l += edges[i+1].startwidth()
|
|
e2 = self.edges["e"]
|
|
if 2*i+1in ignore_widths:
|
|
e1 = self.edges["e"]
|
|
|
|
edges[i](l,
|
|
bedBolts=self.getEntry(bedBolts, i),
|
|
bedBoltSettings=self.getEntry(bedBoltSettings, i))
|
|
self.edgeCorner(e1, e2, 90)
|
|
|
|
if holesMargin is not None:
|
|
self.moveTo(holesMargin + edges[-1].endwidth(),
|
|
holesMargin + edges[0].startwidth())
|
|
self.hexHolesRectangle(x - 2 * holesMargin, y - 2 * holesMargin)
|
|
|
|
self.ctx.stroke()
|
|
|
|
self.move(overallwidth, overallheight, move)
|
|
|
|
def flangedWall(self, x, y, edges="FFFF", flanges=None, r=0.0,
|
|
callback=None, move=None):
|
|
"""Rectangular wall with flanges extending the regular size
|
|
|
|
This is similar to the rectangularWall but it may extend to either side
|
|
replacing the F edge with fingerHoles. Use with E and F for edges only.
|
|
:param x: width
|
|
:param y: height
|
|
:param edges: (Default value = "FFFF") bottom, right, top, left
|
|
:param flanges: (Default value = None) list of width of the flanges
|
|
:param r: radius of the corners of the flange
|
|
:param callback: (Default value = None)
|
|
:param move: (Default value = None)
|
|
"""
|
|
|
|
t = self.thickness
|
|
|
|
if not flanges:
|
|
flanges = [0.0] * 4
|
|
|
|
while len(flanges) < 4:
|
|
flanges.append(0.0)
|
|
|
|
flanges = flanges + flanges # double to allow looping around
|
|
|
|
tw = x + 2*t + flanges[1] + flanges[3]
|
|
th = y + 2*t + flanges[0] + flanges[2]
|
|
|
|
if self.move(tw, th, move, True):
|
|
return
|
|
|
|
rl = min(r, max(flanges[-1], flanges[0]))
|
|
self.moveTo(rl)
|
|
|
|
for i in range(4):
|
|
l = y if i % 2 else x
|
|
|
|
rl = min(r, max(flanges[i-1], flanges[i]))
|
|
rr = min(r, max(flanges[i], flanges[i+1]))
|
|
self.cc(callback, i, x=-rl)
|
|
if flanges[i]:
|
|
if edges[i] == "F":
|
|
self.fingerHolesAt(flanges[i-1]+t-rl, 0.5*t+flanges[i], l,
|
|
angle=0)
|
|
self.edge(l+flanges[i-1]+flanges[i+1]+2*t-rl-rr)
|
|
else:
|
|
self.edge(flanges[i-1]+t-rl)
|
|
self.edges.get(edges[i], edges[i])(l)
|
|
self.edge(flanges[i+1]+t-rr)
|
|
self.corner(90, rr)
|
|
self.move(tw, th, move)
|
|
|
|
def rectangularTriangle(self, x, y, edges="eee", r=0.0, num=1,
|
|
bedBolts=None, bedBoltSettings=None,
|
|
callback=None,
|
|
move=None):
|
|
"""
|
|
Rectangular triangular wall
|
|
|
|
:param x: width
|
|
:param y: height
|
|
:param edges: (Default value = "eee") bottom, right[, diagonal]
|
|
:param r: radius towards the hypothenuse
|
|
:param num: (Default value = 1) number of triangles
|
|
:param bedBolts: (Default value = None)
|
|
:param bedBoltSettings: (Default value = None)
|
|
:param callback: (Default value = None)
|
|
:param move: (Default value = None)
|
|
|
|
"""
|
|
edges = [self.edges.get(e, e) for e in edges]
|
|
if len(edges) == 2:
|
|
edges.append(self.edges["e"])
|
|
if len(edges) != 3:
|
|
raise ValueError("two or three edges required")
|
|
|
|
r = min(r, x, y)
|
|
|
|
width = x + edges[-1].spacing() + edges[1].spacing()
|
|
height = y + edges[0].spacing() + edges[2].spacing()
|
|
if num > 1:
|
|
width += edges[-1].spacing() + edges[1].spacing() + 2*self.spacing
|
|
height += 0.7*r + edges[0].spacing() + edges[2].spacing() + self.spacing
|
|
|
|
overallwidth = width * (num // 2 + num % 2)
|
|
overallheight = height
|
|
|
|
alpha = math.degrees(math.atan((y-r)/float(x-r)))
|
|
|
|
if self.move(overallwidth, overallheight, move, before=True):
|
|
return
|
|
|
|
if self.debug:
|
|
self.rectangularHole(width/2., height/2., width, height)
|
|
|
|
if num > 1:
|
|
self.moveTo(self.spacing + edges[-1].spacing())
|
|
|
|
for n in range(num):
|
|
self.moveTo(edges[-1].spacing()+self.spacing, edges[0].margin())
|
|
if n % 2 == 1:
|
|
self.moveTo(2*edges[1].spacing()+self.spacing, 0)
|
|
if num > 1:
|
|
self.moveTo(edges[1].spacing(), 0)
|
|
for i, l in enumerate((x, y)):
|
|
self.cc(callback, i, y=edges[i].startwidth() + self.burn)
|
|
edges[i](l,
|
|
bedBolts=self.getEntry(bedBolts, i),
|
|
bedBoltSettings=self.getEntry(bedBoltSettings, i))
|
|
self.edgeCorner(edges[i], edges[i + 1], 90)
|
|
|
|
self.corner(alpha, r)
|
|
self.cc(callback, 2)
|
|
edges[2](((x-r)**2+(y-r)**2)**0.5)
|
|
self.corner(90-alpha, r)
|
|
self.corner(90)
|
|
self.ctx.stroke()
|
|
|
|
if n % 2:
|
|
self.moveTo(-edges[1].spacing()-2*self.spacing-edges[-1].spacing(), height-edges[0].spacing(), 180)
|
|
else:
|
|
self.moveTo(width+1*edges[1].spacing()-self.spacing-2*edges[-1].spacing(), height-edges[0].spacing(), 180)
|
|
|
|
|
|
self.move(overallwidth, overallheight, move)
|
|
|
|
##################################################
|
|
### Place Parts
|
|
##################################################
|
|
|
|
def partsMatrix(self, n, width, move, part, *l, **kw):
|
|
|
|
if n <= 0:
|
|
return
|
|
|
|
rows = n//width + (1 if n % width else 0)
|
|
|
|
if not move:
|
|
move = ""
|
|
move = move.split()
|
|
|
|
#move down / left before
|
|
for m in move:
|
|
if m == "left":
|
|
kw["move"] = "left only"
|
|
for i in range(width):
|
|
part(*l, **kw)
|
|
if m == "down":
|
|
kw["move"] = "down only"
|
|
for i in range(rows):
|
|
part(*l, **kw)
|
|
# draw matrix
|
|
for i in range(rows):
|
|
self.ctx.save()
|
|
for j in range(width):
|
|
if "only" in move:
|
|
break
|
|
if width*i+j >= n:
|
|
break
|
|
kw["move"] = "right"
|
|
part(*l, **kw)
|
|
self.ctx.restore()
|
|
kw["move"] = "up only"
|
|
part(*l, **kw)
|
|
|
|
# Move back down
|
|
if "up" not in move:
|
|
kw["move"] = "down only"
|
|
for i in range(rows):
|
|
part(*l, **kw)
|
|
|
|
# Move right
|
|
if "right" in move:
|
|
kw["move"] = "right only"
|
|
for i in range(width):
|
|
part(*l, **kw)
|