boxespy/boxes.py

573 lines
18 KiB
Python
Executable File

#!/usr/bin/python
import cairo
import math
from functools import wraps
def dist(dx, dy):
return (dx*dx+dy*dy)**0.5
def restore(func):
@wraps(func)
def f(self, *args, **kw):
self.ctx.save()
func(self, *args, **kw)
self.ctx.restore()
return f
class Boxes:
def __init__(self, width=300, height=200, thickness=3.0):
self.thickness = thickness
self.burn = 0.1
self.fingerJointSettings = (10.0, 10.0)
self.fingerHoleEdgeWidth = 1.0 # multitudes of self.thickness
self.doveTailJointSettings = (10, 5, 50, 0.4) # width, depth, angle, radius
self.flexSettings = (1.5, 3.0, 15.0) # line distance, connects, width
self.hexHolesSettings = (5, 3, 'circle') # r, dist, style
self.output = "box.svg"
self._init_surface(width, height)
def _init_surface(self, width, height):
self.surface = cairo.SVGSurface(self.output, width, height)
self.ctx = ctx = cairo.Context(self.surface)
ctx.translate(0, height)
ctx.scale(1, -1)
ctx.set_source_rgb(1.0, 1.0, 1.0)
ctx.rectangle(0, 0, width, height)
ctx.fill()
ctx.set_source_rgb(0.0, 0.0, 0.0)
ctx.set_line_width(0.1)
def cc(self, callback, number, x=0.0, y=0.0):
"""call callback"""
self.ctx.save()
self.moveTo(x, y)
if callable(callback):
callback(number)
elif hasattr(callback, '__getitem__'):
try:
callback = callback[number]
if callable(callback):
callback()
except (KeyError, IndexError):
pass
except:
self.ctx.restore()
raise
self.ctx.restore()
############################################################
### Turtle graphics commands
############################################################
def corner(self, degrees, radius=0):
d = 1 if (degrees > 0) else -1
rad = degrees*math.pi/180
if degrees > 0:
self.ctx.arc(0, radius+self.burn, radius+self.burn,
-0.5*math.pi, rad - 0.5*math.pi)
else:
self.ctx.arc_negative(0, -(radius+self.burn), radius+self.burn,
0.5*math.pi, rad + 0.5*math.pi)
self.continueDirection(rad)
def edge(self, length):
self.ctx.line_to(length, 0)
self.ctx.translate(*self.ctx.get_current_point())
def curveTo(self, x1, y1, x2, y2, x3, y3):
"""control point 1, control point 2, end point"""
self.ctx.curve_to(x1, y1, x2, y2, x3, y3)
dx = x3-x2
dy = y3-y2
rad = math.atan2(dy, dx)
self.continueDirection(rad)
def fingerJoint(self, length, positive=True, settings=None):
# assumes, we are already moved out by self.burn!
# negative also assumes we are moved out by self.thinkness!
space, finger = settings or self.fingerJointSettings
fingers = int((length-space) // (space+finger))
leftover = length - fingers*(space+finger) - finger
b = self.burn
s, f, thickness = space, finger, self.thickness
if not positive:
b = -b
thickness = -thickness
self.ctx.move_to(0, 0)
for i in xrange(fingers):
pos = leftover/2.0+i*(space+finger)
self.ctx.line_to(pos+s-b, 0)
self.ctx.line_to(pos+s-b, -thickness)
self.ctx.line_to(pos+s+f+b, -thickness)
self.ctx.line_to(pos+s+f+b, 0)
self.ctx.line_to(length, 0)
self.ctx.translate(*self.ctx.get_current_point())
def fingerHoles(self, length, settings=None):
space, finger = settings or self.fingerJointSettings
fingers = int((length-space) // (space+finger))
leftover = length - fingers*(space+finger) - finger
b = self.burn
s, f = space, finger
for i in xrange(fingers):
pos = leftover/2.0+i*(space+finger)
self.ctx.rectangle(pos+s+b, -self.thickness/2+b,
f-2*b, self.thickness - 2*b)
self.ctx.move_to(0, length)
self.ctx.translate(*self.ctx.get_current_point())
def fingerHoleEdge(self, length, dist=None, settings=None):
if dist is None:
dist = self.fingerHoleEdgeWidth * self.thickness
self.ctx.save()
self.moveTo(0, dist+self.thickness/2)
self.fingerHoles(length, settings)
self.ctx.restore()
# XXX continue path
self.ctx.move_to(0, 0)
self.ctx.line_to(length, 0)
self.ctx.translate(*self.ctx.get_current_point())
# helpers for doveTailJoint
# not intended for general use
def _turnLeft(self, radius, angle):
self.ctx.arc(0, radius, radius,
-0.5*math.pi, angle)
self.continueDirection(0.5*math.pi+angle)
def _turnRight(self, radius, angle):
self.ctx.arc_negative(0, -radius, radius,
0.5*math.pi, -angle)
self.continueDirection(-0.5*math.pi - angle)
def _turn(self, radius, angle, right=True):
if right:
self._turnRight(radius, angle)
else:
self._turnLeft(radius, angle)
def doveTailJoint(self, length, positive=True, settings=None):
width, depth, angle, radius = settings or self.doveTailJointSettings
angle = math.pi*angle/180.0
alpha = 0.5*math.pi - angle
l1 = radius/math.tan(alpha/2.0)
diffx = 0.5*depth/math.tan(alpha)
l2 = 0.5*depth / math.sin(alpha)
sections = int((length) // (width*2))
leftover = length - sections*width*2
p = 1 if positive else -1
self.edge((width+leftover)/2.0+diffx-l1)
for i in xrange(sections):
self._turn(radius-p*self.burn, angle, right=positive)
self.edge(2*(l2-l1))
self._turn(radius+p*self.burn, angle, right=not positive)
self.edge(2*(diffx-l1)+width)
self._turn(radius+p*self.burn, angle, right=not positive)
self.edge(2*(l2-l1))
self._turn(radius-p*self.burn, angle, right=positive)
if i<sections-1: # all but the last
self.edge(2*(diffx-l1)+width)
self.edge((width+leftover)/2.0+diffx-l1)
self.ctx.translate(*self.ctx.get_current_point())
def flex(self, x, h, settings=None, burn=None):
dist, connection, width = settings or self.flexSettings
if burn is None:
burn = self.burn
h += 2*burn
lines = int(x // dist)
leftover = x - lines * dist
sections = int((h-connection) // width)
sheight = ((h-connection) / sections)-connection
for i in xrange(lines):
pos = i*dist + leftover/2
if i % 2:
self.ctx.move_to(pos, 0)
self.ctx.line_to(pos, connection+sheight)
for j in range((sections-1)/2):
self.ctx.move_to(pos, (2*j+1)* sheight+ (2*j+2)*connection)
self.ctx.line_to(pos, (2*j+3)* (sheight+ connection))
if not sections % 2:
self.ctx.move_to(pos, h - sheight- 2*connection)
self.ctx.line_to(pos, h)
else:
if sections % 2:
self.ctx.move_to(pos, h)
self.ctx.line_to(pos, h-connection-sheight)
for j in range((sections-1)/2):
self.ctx.move_to(
pos, h-((2*j+1)* sheight+ (2*j+2)*connection))
self.ctx.line_to(
pos, h-(2*j+3)* (sheight+ connection))
else:
for j in range(sections/2):
self.ctx.move_to(pos,
h-connection-2*j*(sheight+connection))
self.ctx.line_to(pos, h-2*(j+1)*(sheight+connection))
self.ctx.move_to(0, 0)
self.ctx.line_to(x, 0)
self.ctx.translate(*self.ctx.get_current_point())
def grip(self, length, depth):
"""corrugated edge useful as an gipping area"""
grooves = int(length // (depth*2.0)) + 1
depth = length / grooves / 4.0
for groove in xrange(grooves):
self.corner(90, depth)
self.corner(-180, depth)
self.corner(90, depth)
def _latchHole(self, length):
self.edge(self.thickness)
self.corner(-90)
self.edge(length/2.0-2*self.burn)
self.corner(-90)
self.edge(self.thickness)
def _latchGrip(self, length):
self.corner(90, self.thickness/4.0)
self.grip(length/2.0-self.thickness/2.0-2.0*self.burn, self.thickness/2.0)
self.corner(90, self.thickness/4.0)
def latch(self, length, positive=True, reverse=False):
"""Fix a flex box door at the box
positive: False: Door side; True: Box side
reverse: True when running away from the latch
"""
if positive:
if reverse:
self.edge(length/2.0-self.burn)
self.corner(-90)
self.edge(self.thickness)
self.corner(90)
self.edge(length/2.0)
self.corner(90)
self.edge(self.thickness)
self.corner(-90)
if not reverse:
self.edge(length/2.0-self.burn)
else:
if reverse:
self._latchGrip(length)
else:
self.corner(90)
self._latchHole(length)
if not reverse:
self._latchGrip(length)
else:
self.corner(90)
def handle(self, x, h, hl, r=20):
"""Creates and Edge with a handle"""
d = (x-hl-2*r)/2.0
if d < 0:
print "Handle too wide"
self.ctx.save()
# Hole
self.moveTo(d+20+r, 0)
self.edge(hl-2*r)
self.corner(-90, r)
self.edge(h-20-2*r)
self.corner(-90, r)
self.edge(hl-2*r)
self.corner(-90, r)
self.edge(h-20-2*r)
self.corner(-90, r)
self.ctx.restore()
self.moveTo(0,0)
self.curveTo(d, 0, d, 0, d, -h+r)
self.curveTo(r, 0, r, 0, r, r)
self.edge(hl)
self.curveTo(r, 0, r, 0, r, r)
self.curveTo(h-r, 0, h-r, 0, h-r, -d)
### Navigation
def moveTo(self, x, y, degrees=0):
self.ctx.translate(x, y)
self.ctx.rotate(degrees*math.pi/180.0)
self.ctx.move_to(0, 0)
def continueDirection(self, angle=0):
self.ctx.translate(*self.ctx.get_current_point())
self.ctx.rotate(angle)
# Building blocks
def fingerHolesAt(self, x, y, length, angle=90, burn=None):
if burn is None:
burn = self.burn
# XXX burn with callbacks
self.ctx.save()
self.moveTo(x, y+burn, angle)
self.fingerHoles(length)
self.ctx.restore()
def hole(self, x, y, r):
self.ctx.save()
self.moveTo(x+r, y)
self.ctx.arc(-r, 0, r, 0, 2*math.pi)
self.ctx.restore()
# hexHoles
def hexHolesRectangle(self, x, y, settings=None, skip=None):
"""
Fills a rectangle with holes.
r : radius of holes
b : space between holes
style : what types of holes (not yet implemented)
skip : function to check if hole should be present
gets x, y, r, b, posx, posy
"""
if settings is None:
settings = self.hexHolesSettings
r, b, style = settings
w = r+b/2.0
dist = w * math.cos(math.pi/6.0)
# how many half circles do fit
cx = int((x-2*r) // (w)) + 2
cy = int((y-2*r) // (dist)) + 2
# what's left on the sides
lx = (x - (2*r+(cx-2)*w))/2.0
ly = (y - (2*r+((cy//2)*2)*dist-2*dist))/2.0
for i in xrange(cy//2):
for j in xrange((cx-(i%2))//2):
px = 2*j*w + r + lx
py = i*2*dist + r + ly
if i % 2:
px += w
if skip and skip(x, y, r, b, px, py):
continue
self.hole(px, py, r)
def __skipcircle(self, x, y, r, b, posx, posy):
cx, cy = x/2.0, y/2.0
return (dist(posx-cx, posy-cy) > (cx-r))
def hexHolesCircle(self, d, settings=None):
d2 = d/2.0
self.hexHolesRectangle(d, d, settings=settings, skip=self.__skipcircle)
def hexHolesPlate(self, x, y, rc, settings=None):
def skip(x, y, r, b, posx, posy):
posx = abs(posx-(x/2.0))
posy = abs(posy-(y/2.0))
wx = 0.5*x-rc-r
wy = 0.5*y-rc-r
if (posx <= wx) or (posy <= wx):
return 0
return dist(posx-wx, posy-wy) > rc
self.hexHolesRectangle(x, y, settings, skip=skip)
def hexHolesHex(self, h, settings=None, grow=None):
if settings is None:
settings = self.hexHolesSettings
r, b, style = settings
self.ctx.rectangle(0, 0, h, h)
w = r+b/2.0
dist = w * math.cos(math.pi/6.0)
cy = 2 * int((h-4*dist)// (4*w)) + 1
leftover = h-2*r-(cy-1)*2*r
print h, leftover
if grow=='space ':
b += leftover / (cy-1) / 2
# recalulate with adjusted values
w = r+b/2.0
dist = w * math.cos(math.pi/6.0)
self.moveTo(h/2.0-(cy//2)*2*w, h/2.0)
for j in xrange(cy):
self.hole(2*j*w, 0, r)
for i in xrange(1, cy/2+1):
for j in xrange(cy-i):
self.hole(j*2*w+i*w, i*2*dist, r)
self.hole(j*2*w+i*w, -i*2*dist, r)
##################################################
### parts
##################################################
def roundedPlate(self, x, y, r, callback=None,
holesMargin=None, holesSettings=None):
"""fits surroundingWall
first edge is split to have a joint in the middle of the side
callback is called at the beginning of the straight edges
0, 1 for the two part of the first edge, 2, 3, 4 for the others
set holesMargin to get hex holes.
"""
self.ctx.save()
self.moveTo(r, 0)
self.cc(callback, 0)
self.fingerJoint(x/2.0-r)
self.cc(callback, 1)
self.fingerJoint(x/2.0-r)
for i, l in zip(range(3), (y, x, y)):
self.corner(90, r)
self.cc(callback, i+2)
self.fingerJoint(l-2*r)
self.corner(90, r)
self.ctx.restore()
self.ctx.save()
if holesMargin is not None:
self.moveTo(holesMargin, holesMargin)
if r > holesMargin:
r -= holesMargin
else:
r = 0
self.hexHolesPlate(x-2*holesMargin, y-2*holesMargin, r,
settings=holesSettings)
self.ctx.restore()
def _edge(self, l, style):
if type(style) is tuple:
style = style[0]
if callable(style):
return style(l)
if style in 'eE':
self.edge(l)
elif style == 'h':
self.fingerHoleEdge(l)
elif style == 'f':
self.fingerJoint(l)
elif style == 'F':
self.fingerJoint(l, positive=False)
elif style in 'dD':
self.doveTailJoint(l, positive=(style=='d'))
def _edgewidth(self, style):
"""return how far a given edge type needs to be set out"""
if type(style) is tuple:
return style[1]
if style == 'h':
return (self.fingerHoleEdgeWidth+1) * self.thickness
elif style in 'FE':
return self.thickness
return 0.0
def surroundingWall(self, x, y, r, h,
bottom='e', top='e',
callback=None):
"""
h : inner height, not counting the joints
callback is called a beginn of the flat sides with
0 for right half of first x side;
1 and 3 for y sides;
2 for second x side
4 for second half of the first x side
"""
c4 = (r+self.burn)*math.pi*0.5 # circumference of quarter circle
topwidth = self._edgewidth(top)
bottomwidth = self._edgewidth(bottom)
self.cc(callback, 0, y=bottomwidth+self.burn)
self._edge(x/2.0-r, bottom)
for i, l in zip(range(4), (y, x, y, 0)):
self.flex(c4, h+topwidth+bottomwidth)
self.cc(callback, i+1, y=bottomwidth+self.burn)
if i < 3:
self._edge(l-2*r, bottom)
self._edge(x/2.0-r, bottom)
self.corner(90)
self.edge(bottomwidth)
self.doveTailJoint(h)
self.edge(topwidth)
self.corner(90)
self._edge(x/2.0-r, top)
for i, l in zip(range(4), (y, x, y, 0)):
self.edge(c4)
if i < 3:
self._edge(l - 2*r, top)
self._edge(x/2.0-r, top)
self.corner(90)
self.edge(topwidth)
self.doveTailJoint(h, positive=False)
self.edge(bottomwidth)
self.corner(90)
@restore
def rectangularWall(self, x, y, edges="eeee",
holesMargin=None, holesSettings=None):
if len(edges) != 4:
raise ValueError, "four edges required"
edges += edges # append for wrapping around
for i, l in enumerate((x, y, x, y)):
self._edge(self._edgewidth(edges[i-1]), 'e')
self._edge(l, edges[i])
self._edge(self._edgewidth(edges[i+1]), 'e')
self.corner(90)
if holesMargin is not None:
self.moveTo(holesMargin+self._edgewidth(edges[-1]),
holesMargin+self._edgewidth(edges[0]))
self.hexHolesRectangle(x-2*holesMargin, y-2*holesMargin)
##################################################
### main
##################################################
def render(self, x, y, h):
self.ctx.save()
self.moveTo(10, 10)
self.roundedPlate(x, y, 0)
self.moveTo(x+40, 0)
self.rectangularWall(x, y, "FFFF")
self.ctx.restore()
self.moveTo(10, y+20)
for i in range(2):
for l in (x, y):
self.rectangularWall(l, h, "hffF")
self.moveTo(l+20, 0)
self.moveTo(-x-y-40, h+20)
self.ctx.stroke()
self.surface.flush()
if __name__ == '__main__':
b = Boxes(900, 700)
b.render(100, 161.8, 120)