524 lines
17 KiB
Python
Executable File
524 lines
17 KiB
Python
Executable File
#!/usr/bin/python
|
|
|
|
import cairo
|
|
import math
|
|
from functools import wraps
|
|
|
|
def dist(dx, dy):
|
|
return (dx*dx+dy*dy)**0.5
|
|
|
|
def restore(func):
|
|
@wraps(func)
|
|
def f(self, *args, **kw):
|
|
self.ctx.save()
|
|
func(self, *args, **kw)
|
|
self.ctx.restore()
|
|
return f
|
|
|
|
|
|
class Boxes:
|
|
|
|
def __init__(self, width=300, height=200, thickness=3.0):
|
|
self.thickness = thickness
|
|
self.burn = 0.1
|
|
self.fingerJointSettings = (10.0, 10.0)
|
|
self.fingerHoleEdgeWidth = 1.0 # multitudes of self.thickness
|
|
self.doveTailJointSettings = (10, 5, 50, 0.4) # width, depth, angle, radius
|
|
self.flexSettings = (1.5, 3.0, 15.0) # line distance, connects, width
|
|
self.hexHolesSettings = (5, 3, 'circle') # r, dist, style
|
|
self.output = "box.svg"
|
|
self._init_surface(width, height)
|
|
|
|
def _init_surface(self, width, height):
|
|
self.surface = cairo.SVGSurface(self.output, width, height)
|
|
self.ctx = ctx = cairo.Context(self.surface)
|
|
ctx.translate(0, height)
|
|
ctx.scale(1, -1)
|
|
|
|
ctx.set_source_rgb(1.0, 1.0, 1.0)
|
|
ctx.rectangle(0, 0, width, height)
|
|
ctx.fill()
|
|
|
|
ctx.set_source_rgb(0.0, 0.0, 0.0)
|
|
ctx.set_line_width(0.1)
|
|
|
|
|
|
def cc(self, callback, number, x=0.0, y=0.0):
|
|
"""call callback"""
|
|
self.ctx.save()
|
|
self.moveTo(x, y)
|
|
if callable(callback):
|
|
callback(number)
|
|
elif hasattr(callback, '__getitem__'):
|
|
try:
|
|
callback = callback[number]
|
|
if callable(callback):
|
|
callback()
|
|
except (KeyError, IndexError):
|
|
pass
|
|
except:
|
|
self.ctx.restore()
|
|
raise
|
|
self.ctx.restore()
|
|
|
|
|
|
############################################################
|
|
### Turtle graphics commands
|
|
############################################################
|
|
|
|
def corner(self, degrees, radius=0):
|
|
d = 1 if (degrees > 0) else -1
|
|
rad = degrees*math.pi/180
|
|
if degrees > 0:
|
|
self.ctx.arc(0, radius+self.burn, radius+self.burn,
|
|
-0.5*math.pi, rad - 0.5*math.pi)
|
|
else:
|
|
self.ctx.arc_negative(0, -(radius+self.burn), radius+self.burn,
|
|
0.5*math.pi, rad + 0.5*math.pi)
|
|
|
|
self.continueDirection(rad)
|
|
|
|
def edge(self, length):
|
|
self.ctx.line_to(length, 0)
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
|
|
def curveTo(self, x1, y1, x2, y2, x3, y3):
|
|
"""control point 1, control point 2, end point"""
|
|
self.ctx.curve_to(x1, y1, x2, y2, x3, y3)
|
|
dx = x3-x2
|
|
dy = y3-y2
|
|
rad = math.atan2(dy, dx)
|
|
self.continueDirection(rad)
|
|
|
|
def fingerJoint(self, length, positive=True, settings=None):
|
|
# assumes, we are already moved out by self.burn!
|
|
# negative also assumes we are moved out by self.thinkness!
|
|
space, finger = settings or self.fingerJointSettings
|
|
fingers = int((length-space) // (space+finger))
|
|
leftover = length - fingers*(space+finger) - finger
|
|
b = self.burn
|
|
s, f, thickness = space, finger, self.thickness
|
|
if not positive:
|
|
b = -b
|
|
thickness = -thickness
|
|
|
|
self.ctx.move_to(0, 0)
|
|
for i in xrange(fingers):
|
|
pos = leftover/2.0+i*(space+finger)
|
|
self.ctx.line_to(pos+s-b, 0)
|
|
self.ctx.line_to(pos+s-b, -thickness)
|
|
self.ctx.line_to(pos+s+f+b, -thickness)
|
|
self.ctx.line_to(pos+s+f+b, 0)
|
|
self.ctx.line_to(length, 0)
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
|
|
def fingerHoles(self, length, settings=None):
|
|
space, finger = settings or self.fingerJointSettings
|
|
fingers = int((length-space) // (space+finger))
|
|
leftover = length - fingers*(space+finger) - finger
|
|
b = self.burn
|
|
s, f = space, finger
|
|
for i in xrange(fingers):
|
|
pos = leftover/2.0+i*(space+finger)
|
|
self.ctx.rectangle(pos+s+b, -self.thickness/2+b,
|
|
f-2*b, self.thickness - 2*b)
|
|
|
|
self.ctx.move_to(0, length)
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
|
|
def fingerHoleEdge(self, length, dist=None, settings=None):
|
|
if dist is None:
|
|
dist = self.fingerHoleEdgeWidth * self.thickness
|
|
self.ctx.save()
|
|
self.moveTo(0, dist+self.thickness/2)
|
|
self.fingerHoles(length, settings)
|
|
self.ctx.restore()
|
|
# XXX continue path
|
|
self.ctx.move_to(0, 0)
|
|
self.ctx.line_to(length, 0)
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
|
|
|
|
# helpers for doveTailJoint
|
|
# not intended for general use
|
|
def _turnLeft(self, radius, angle):
|
|
self.ctx.arc(0, radius, radius,
|
|
-0.5*math.pi, angle)
|
|
self.continueDirection(0.5*math.pi+angle)
|
|
|
|
def _turnRight(self, radius, angle):
|
|
self.ctx.arc_negative(0, -radius, radius,
|
|
0.5*math.pi, -angle)
|
|
self.continueDirection(-0.5*math.pi - angle)
|
|
|
|
def _turn(self, radius, angle, right=True):
|
|
if right:
|
|
self._turnRight(radius, angle)
|
|
else:
|
|
self._turnLeft(radius, angle)
|
|
|
|
def doveTailJoint(self, length, positive=True, settings=None):
|
|
width, depth, angle, radius = settings or self.doveTailJointSettings
|
|
angle = math.pi*angle/180.0
|
|
alpha = 0.5*math.pi - angle
|
|
|
|
l1 = radius/math.tan(alpha/2.0)
|
|
diffx = 0.5*depth/math.tan(alpha)
|
|
l2 = 0.5*depth / math.sin(alpha)
|
|
|
|
sections = int((length) // (width*2))
|
|
leftover = length - sections*width*2
|
|
|
|
p = 1 if positive else -1
|
|
|
|
self.edge((width+leftover)/2.0+diffx-l1)
|
|
for i in xrange(sections):
|
|
self._turn(radius-p*self.burn, angle, right=positive)
|
|
self.edge(2*(l2-l1))
|
|
self._turn(radius+p*self.burn, angle, right=not positive)
|
|
self.edge(2*(diffx-l1)+width)
|
|
self._turn(radius+p*self.burn, angle, right=not positive)
|
|
self.edge(2*(l2-l1))
|
|
self._turn(radius-p*self.burn, angle, right=positive)
|
|
if i<sections-1: # all but the last
|
|
self.edge(2*(diffx-l1)+width)
|
|
self.edge((width+leftover)/2.0+diffx-l1)
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
|
|
def flex(self, x, h, settings=None, burn=None):
|
|
dist, connection, width = settings or self.flexSettings
|
|
if burn is None:
|
|
burn = self.burn
|
|
h += 2*burn
|
|
lines = int(x // dist)
|
|
leftover = x - lines * dist
|
|
sections = int((h-connection) // width)
|
|
sheight = ((h-connection) / sections)-connection
|
|
|
|
for i in xrange(lines):
|
|
pos = i*dist + leftover/2
|
|
if i % 2:
|
|
self.ctx.move_to(pos, 0)
|
|
self.ctx.line_to(pos, connection+sheight)
|
|
for j in range((sections-1)/2):
|
|
self.ctx.move_to(pos, (2*j+1)* sheight+ (2*j+2)*connection)
|
|
self.ctx.line_to(pos, (2*j+3)* (sheight+ connection))
|
|
if not sections % 2:
|
|
self.ctx.move_to(pos, h - sheight- 2*connection)
|
|
self.ctx.line_to(pos, h)
|
|
else:
|
|
if sections % 2:
|
|
self.ctx.move_to(pos, h)
|
|
self.ctx.line_to(pos, h-connection-sheight)
|
|
for j in range((sections-1)/2):
|
|
self.ctx.move_to(
|
|
pos, h-((2*j+1)* sheight+ (2*j+2)*connection))
|
|
self.ctx.line_to(
|
|
pos, h-(2*j+3)* (sheight+ connection))
|
|
|
|
else:
|
|
for j in range(sections/2):
|
|
self.ctx.move_to(pos,
|
|
h-connection-2*j*(sheight+connection))
|
|
self.ctx.line_to(pos, h-2*(j+1)*(sheight+connection))
|
|
|
|
self.ctx.move_to(0, 0)
|
|
self.ctx.line_to(x, 0)
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
|
|
def handle(self, x, h, hl, r=20):
|
|
"""Creates and Edge with a handle"""
|
|
d = (x-hl-2*r)/2.0
|
|
if d < 0:
|
|
print "Handle too wide"
|
|
|
|
self.ctx.save()
|
|
|
|
# Hole
|
|
self.moveTo(d+20+r, 0)
|
|
self.edge(hl-2*r)
|
|
self.corner(-90, r)
|
|
self.edge(h-20-2*r)
|
|
self.corner(-90, r)
|
|
self.edge(hl-2*r)
|
|
self.corner(-90, r)
|
|
self.edge(h-20-2*r)
|
|
self.corner(-90, r)
|
|
|
|
self.ctx.restore()
|
|
self.moveTo(0,0)
|
|
|
|
self.curveTo(d, 0, d, 0, d, -h+r)
|
|
self.curveTo(r, 0, r, 0, r, r)
|
|
self.edge(hl)
|
|
self.curveTo(r, 0, r, 0, r, r)
|
|
self.curveTo(h-r, 0, h-r, 0, h-r, -d)
|
|
|
|
### Navigation
|
|
|
|
def moveTo(self, x, y, degrees=0):
|
|
self.ctx.translate(x, y)
|
|
self.ctx.rotate(degrees*math.pi/180.0)
|
|
self.ctx.move_to(0, 0)
|
|
|
|
def continueDirection(self, angle=0):
|
|
self.ctx.translate(*self.ctx.get_current_point())
|
|
self.ctx.rotate(angle)
|
|
|
|
# Building blocks
|
|
|
|
def fingerHolesAt(self, x, y, length, angle=90, burn=None):
|
|
if burn is None:
|
|
burn = self.burn
|
|
# XXX burn with callbacks
|
|
self.ctx.save()
|
|
self.moveTo(x, y+burn, angle)
|
|
self.fingerHoles(length)
|
|
self.ctx.restore()
|
|
|
|
|
|
def hole(self, x, y, r):
|
|
self.ctx.save()
|
|
self.moveTo(x+r, y)
|
|
self.ctx.arc(-r, 0, r, 0, 2*math.pi)
|
|
self.ctx.restore()
|
|
|
|
# hexHoles
|
|
|
|
def hexHolesRectangle(self, x, y, settings=None, skip=None):
|
|
"""
|
|
Fills a rectangle with holes.
|
|
r : radius of holes
|
|
b : space between holes
|
|
style : what types of holes (not yet implemented)
|
|
skip : function to check if hole should be present
|
|
gets x, y, r, b, posx, posy
|
|
"""
|
|
if settings is None:
|
|
settings = self.hexHolesSettings
|
|
r, b, style = settings
|
|
|
|
w = r+b/2.0
|
|
dist = w * math.cos(math.pi/6.0)
|
|
|
|
# how many half circles do fit
|
|
cx = int((x-2*r) // (w)) + 2
|
|
cy = int((y-2*r) // (dist)) + 2
|
|
|
|
# what's left on the sides
|
|
lx = (x - (2*r+(cx-2)*w))/2.0
|
|
ly = (y - (2*r+((cy//2)*2)*dist-2*dist))/2.0
|
|
|
|
for i in xrange(cy//2):
|
|
for j in xrange((cx-(i%2))//2):
|
|
px = 2*j*w + r + lx
|
|
py = i*2*dist + r + ly
|
|
if i % 2:
|
|
px += w
|
|
if skip and skip(x, y, r, b, px, py):
|
|
continue
|
|
self.hole(px, py, r)
|
|
|
|
def __skipcircle(self, x, y, r, b, posx, posy):
|
|
cx, cy = x/2.0, y/2.0
|
|
return (dist(posx-cx, posy-cy) > (cx-r))
|
|
|
|
def hexHolesCircle(self, d, settings=None):
|
|
d2 = d/2.0
|
|
self.hexHolesRectangle(d, d, settings=settings, skip=self.__skipcircle)
|
|
|
|
def hexHolesPlate(self, x, y, rc, settings=None):
|
|
def skip(x, y, r, b, posx, posy):
|
|
posx = abs(posx-(x/2.0))
|
|
posy = abs(posy-(y/2.0))
|
|
|
|
wx = 0.5*x-rc-r
|
|
wy = 0.5*y-rc-r
|
|
|
|
if (posx <= wx) or (posy <= wx):
|
|
return 0
|
|
return dist(posx-wx, posy-wy) > rc
|
|
|
|
self.hexHolesRectangle(x, y, settings, skip=skip)
|
|
|
|
def hexHolesHex(self, h, settings=None, grow=None):
|
|
if settings is None:
|
|
settings = self.hexHolesSettings
|
|
r, b, style = settings
|
|
|
|
self.ctx.rectangle(0, 0, h, h)
|
|
w = r+b/2.0
|
|
dist = w * math.cos(math.pi/6.0)
|
|
cy = 2 * int((h-4*dist)// (4*w)) + 1
|
|
|
|
leftover = h-2*r-(cy-1)*2*r
|
|
print h, leftover
|
|
if grow=='space ':
|
|
b += leftover / (cy-1) / 2
|
|
|
|
# recalulate with adjusted values
|
|
w = r+b/2.0
|
|
dist = w * math.cos(math.pi/6.0)
|
|
|
|
self.moveTo(h/2.0-(cy//2)*2*w, h/2.0)
|
|
for j in xrange(cy):
|
|
self.hole(2*j*w, 0, r)
|
|
for i in xrange(1, cy/2+1):
|
|
for j in xrange(cy-i):
|
|
self.hole(j*2*w+i*w, i*2*dist, r)
|
|
self.hole(j*2*w+i*w, -i*2*dist, r)
|
|
|
|
##################################################
|
|
### parts
|
|
##################################################
|
|
|
|
def roundedPlate(self, x, y, r, callback=None,
|
|
holesMargin=None, holesSettings=None):
|
|
"""fits surroundingWall
|
|
first edge is split to have a joint in the middle of the side
|
|
callback is called at the beginning of the straight edges
|
|
0, 1 for the two part of the first edge, 2, 3, 4 for the others
|
|
|
|
set holesMargin to get hex holes.
|
|
"""
|
|
|
|
self.ctx.save()
|
|
self.moveTo(r, 0)
|
|
self.cc(callback, 0)
|
|
self.fingerJoint(x/2.0-r)
|
|
self.cc(callback, 1)
|
|
self.fingerJoint(x/2.0-r)
|
|
for i, l in zip(range(3), (y, x, y)):
|
|
self.corner(90, r)
|
|
self.cc(callback, i+2)
|
|
self.fingerJoint(l-2*r)
|
|
self.corner(90, r)
|
|
|
|
self.ctx.restore()
|
|
self.ctx.save()
|
|
|
|
if holesMargin is not None:
|
|
self.moveTo(holesMargin, holesMargin)
|
|
if r > holesMargin:
|
|
r -= holesMargin
|
|
else:
|
|
r = 0
|
|
self.hexHolesPlate(x-2*holesMargin, y-2*holesMargin, r,
|
|
settings=holesSettings)
|
|
self.ctx.restore()
|
|
|
|
def _edge(self, l, style):
|
|
if type(style) is tuple:
|
|
style = style[0]
|
|
if callable(style):
|
|
return style(l)
|
|
if style in 'eE':
|
|
self.edge(l)
|
|
elif style == 'h':
|
|
self.fingerHoleEdge(l)
|
|
elif style == 'f':
|
|
self.fingerJoint(l)
|
|
elif style == 'F':
|
|
self.fingerJoint(l, positive=False)
|
|
elif style in 'dD':
|
|
self.doveTailJoint(l, positive=(style=='d'))
|
|
|
|
def _edgewidth(self, style):
|
|
"""return how far a given edge type needs to be set out"""
|
|
if type(style) is tuple:
|
|
return style[1]
|
|
if style == 'h':
|
|
return (self.fingerHoleEdgeWidth+1) * self.thickness
|
|
elif style in 'FE':
|
|
return self.thickness
|
|
return 0.0
|
|
|
|
def surroundingWall(self, x, y, r, h,
|
|
bottom='e', top='e',
|
|
callback=None):
|
|
"""
|
|
h : inner height, not counting the joints
|
|
callback is called a beginn of the flat sides with
|
|
0 for right half of first x side;
|
|
1 and 3 for y sides;
|
|
2 for second x side
|
|
4 for second half of the first x side
|
|
"""
|
|
c4 = (r+self.burn)*math.pi*0.5 # circumference of quarter circle
|
|
topwidth = self._edgewidth(top)
|
|
bottomwidth = self._edgewidth(bottom)
|
|
|
|
self.cc(callback, 0, y=bottomwidth+self.burn)
|
|
self._edge(x/2.0-r, bottom)
|
|
for i, l in zip(range(4), (y, x, y, 0)):
|
|
self.flex(c4, h+topwidth+bottomwidth)
|
|
self.cc(callback, i+1, y=bottomwidth+self.burn)
|
|
if i < 3:
|
|
self._edge(l-2*r, bottom)
|
|
self._edge(x/2.0-r, bottom)
|
|
|
|
self.corner(90)
|
|
self.edge(bottomwidth)
|
|
self.doveTailJoint(h)
|
|
self.edge(topwidth)
|
|
self.corner(90)
|
|
|
|
self._edge(x/2.0-r, top)
|
|
for i, l in zip(range(4), (y, x, y, 0)):
|
|
self.edge(c4)
|
|
if i < 3:
|
|
self._edge(l - 2*r, top)
|
|
self._edge(x/2.0-r, top)
|
|
|
|
self.corner(90)
|
|
self.edge(topwidth)
|
|
self.doveTailJoint(h, positive=False)
|
|
self.edge(bottomwidth)
|
|
self.corner(90)
|
|
|
|
@restore
|
|
def rectangularWall(self, x, y, edges="eeee",
|
|
holesMargin=None, holesSettings=None):
|
|
if len(edges) != 4:
|
|
raise ValueError, "four edges required"
|
|
edges += edges # append for wrapping around
|
|
for i, l in enumerate((x, y, x, y)):
|
|
self._edge(self._edgewidth(edges[i-1]), 'e')
|
|
self._edge(l, edges[i])
|
|
self._edge(self._edgewidth(edges[i+1]), 'e')
|
|
self.corner(90)
|
|
|
|
if holesMargin is not None:
|
|
self.moveTo(holesMargin+self._edgewidth(edges[-1]),
|
|
holesMargin+self._edgewidth(edges[0]))
|
|
self.hexHolesRectangle(x-2*holesMargin, y-2*holesMargin)
|
|
|
|
##################################################
|
|
### main
|
|
##################################################
|
|
|
|
def render(self, x, y, h):
|
|
self.ctx.save()
|
|
|
|
self.moveTo(10, 10)
|
|
self.roundedPlate(x, y, 0)
|
|
self.moveTo(x+40, 0)
|
|
self.rectangularWall(x, y, "FFFF")
|
|
|
|
self.ctx.restore()
|
|
|
|
self.moveTo(10, y+20)
|
|
for i in range(2):
|
|
for l in (x, y):
|
|
self.rectangularWall(l, h, "hffF")
|
|
self.moveTo(l+20, 0)
|
|
self.moveTo(-x-y-40, h+20)
|
|
|
|
|
|
self.ctx.stroke()
|
|
self.surface.flush()
|
|
|
|
if __name__ == '__main__':
|
|
b = Boxes(900, 700)
|
|
b.render(100, 161.8, 120)
|