nodemcu-firmware/docs/modules/node.md

22 KiB
Raw Blame History

node Module

Since Origin / Contributor Maintainer Source
2014-12-22 Zeroday Zeroday node.c

The node module provides access to system-level features such as sleep, restart and various info and IDs.

node.bootreason()

Returns the boot reason and extended reset info.

The first value returned is the raw code, not the new "reset info" code which was introduced in recent SDKs. Values are:

  • 1, power-on
  • 2, reset (software?)
  • 3, hardware reset via reset pin
  • 4, WDT reset (watchdog timeout)

The second value returned is the extended reset cause. Values are:

  • 0, power-on
  • 1, hardware watchdog reset
  • 2, exception reset
  • 3, software watchdog reset
  • 4, software restart
  • 5, wake from deep sleep
  • 6, external reset

In general, the extended reset cause supercedes the raw code. The raw code is kept for backwards compatibility only. For new applications it is highly recommended to use the extended reset cause instead.

In case of extended reset cause 3 (exception reset), additional values are returned containing the crash information. These are, in order, EXCCAUSE, EPC1, EPC2, EPC3, EXCVADDR, and DEPC.

Syntax

node.bootreason()

Parameters

none

Returns

rawcode, reason [, exccause, epc1, epc2, epc3, excvaddr, depc ]

Example

_, reset_reason = node.bootreason()
if reset_reason == 0 then print("Power UP!") end

node.chipid()

Returns the ESP chip ID.

Syntax

node.chipid()

Parameters

none

Returns

chip ID (number)

node.compile()

Compiles a Lua text file into Lua bytecode, and saves it as .lc file.

Syntax

node.compile("file.lua")

Parameters

filename name of Lua text file

Returns

nil

Example

file.open("hello.lua","w+")
file.writeline([[print("hello nodemcu")]])
file.writeline([[print(node.heap())]])
file.close()

node.compile("hello.lua")
dofile("hello.lua")
dofile("hello.lc")

node.dsleep()

Enters deep sleep mode, wakes up when timed out.

Theoretical maximum deep sleep duration can be found with node.dsleepMax(). "Max deep sleep for ESP8266" claims the realistic maximum be around 3.5h.

!!! caution

This function can only be used in the condition that esp8266 PIN32(RST) and PIN8(XPD_DCDC aka GPIO16) are connected together. Using sleep(0) will set no wake up timer, connect a GPIO to pin RST, the chip will wake up by a falling-edge on pin RST.

Syntax

node.dsleep(us, option, instant)

Parameters

  • us number (integer) or nil, sleep time in micro second. If us == 0, it will sleep forever. If us == nil, will not set sleep time.

  • option number (integer) or nil. If nil, it will use last alive setting as default option.

    • 0, init data byte 108 is valuable
    • > 0, init data byte 108 is valueless
    • 0, RF_CAL or not after deep-sleep wake up, depends on init data byte 108
    • 1, RF_CAL after deep-sleep wake up, there will be large current
    • 2, no RF_CAL after deep-sleep wake up, there will only be small current
    • 4, disable RF after deep-sleep wake up, just like modem sleep, there will be the smallest current
  • instant number (integer) or nil. If present and non-zero, the chip will enter Deep-sleep immediately and will not wait for the Wi-Fi core to be shutdown.

Returns

nil

Example

--do nothing
node.dsleep()
--sleep μs
node.dsleep(1000000)
--set sleep option, then sleep μs
node.dsleep(1000000, 4)
--set sleep option only
node.dsleep(nil,4)

See also

node.dsleepMax()

Returns the current theoretical maximum deep sleep duration.

!!! caution

While it is possible to specify a longer sleep time than the theoretical maximum sleep duration, it is not recommended to exceed this maximum. In tests documented at ["Max deep sleep for ESP8266"](https://thingpulse.com/max-deep-sleep-for-esp8266/) the device never woke up again if the specified sleep time was beyond `dsleepMax()`.

!!! note

This theoretical maximum is dependent on ambient temperature: lower temp = shorter sleep duration, higher temp = longer sleep duration

Syntax

node.dsleepMax()

Parameters

none

Returns

max_duration

Example

node.dsleep(node.dsleepMax())

See also

node.flashid()

Returns the flash chip ID.

Syntax

node.flashid()

Parameters

none

Returns

flash ID (number)

node.flashindex()

Returns the function reference for a function in the LFS (Lua Flash Store).

Syntax

node.flashindex(modulename)

Parameters

modulename The name of the module to be loaded. If this is nil or invalid then an info list is returned

Returns

  • In the case where the LFS in not loaded, node.flashindex evaluates to nil, followed by the flash mapped base addresss of the LFS, its flash offset, and the size of the LFS.
  • If the LFS is loaded and the function is called with the name of a valid module in the LFS, then the function is returned in the same way the load() and the other Lua load functions do.
  • Otherwise an extended info list is returned: the Unix time of the LFS build, the flash and mapped base addresses of the LFS and its current length, and an array of the valid module names in the LFS.

Example

The node.flashindex() is a low level API call that is normally wrapped using standard Lua code to present a simpler application API. See the module _init.lua in the lua_examples/lfs directory for an example of how to do this.

node.flashreload()

Reload the LFS (Lua Flash Store) with the flash image provided. Flash images are generated on the host machine using the luac.crosscommnad.

Syntax

node.flashreload(imageName)

Parameters

imageName The name of a image file in the filesystem to be loaded into the LFS.

Returns

Error message LFS images are now gzip compressed. In the case of the imagename being a valid LFS image, this is expanded and loaded into flash. The ESP is then immediately rebooted, so control is not returned to the calling Lua application in the case of a successful reload. This reload process internally makes two passes through the LFS image file; and on the first it validates the file and header formats and detects any errors. If any is detected then an error string is returned.

node.flashsize()

Returns the flash chip size in bytes. On 4MB modules like ESP-12 the return value is 4194304 = 4096KB.

Syntax

node.flashsize()

Parameters

none

Returns

flash size in bytes (integer)

node.getcpufreq()

Get the current CPU Frequency.

Syntax

node.getcpufreq()

Parameters

none

Returns

Current CPU frequency (number)

Example

do
  local cpuFreq = node.getcpufreq()
  print("The current CPU frequency is " .. cpuFreq .. " MHz")
end

node.getpartitiontable()

Get the current LFS and SPIFFS partition information.

Syntax

node.getpartitiontable()

Parameters

none

Returns

An array containing entries for lfs_addr, lfs_size, spiffs_addr and spiffs_size. The address values are offsets relative to the start of the Flash memory.

Example

print("The LFS size is " .. node.getpartitiontable().lfs_size)

See also

node.setpartitiontable()

node.heap()

Returns the current available heap size in bytes. Note that due to fragmentation, actual allocations of this size may not be possible.

Syntax

node.heap()

Parameters

none

Returns

system heap size left in bytes (number)

node.info()

Returns information about hardware, software version and build configuration.

Syntax

node.info([group])

Parameters

group group of information (optional, if ommited return legacy information). May be one of "hw", "sw_version", "build_config".

Returns

if a group is given the return value will be a table containing the following elements:

  • for group = "hw"
    • chip_id (number)
    • flash_id (number)
    • flash_size (number)
    • flash_mode (number) QIO = 0, QOUT = 1, DIO = 2, DOUT = 15.
    • flash_speed (number)
  • for group = "sw_version"
    • git_branch (string)
    • git_commit_id (string)
    • git_release (string) Release name +additional commits e.g. "2.0.0-master_20170202 +403"
    • git_commit_dts (string) in an ordering format. e.g. "201908111200"
    • node_verion_major (number)
    • node_verion_minor (number)
    • node_verion_revision (number)
  • for group = "build_config"
    • ssl (boolean)
    • lfs_size (number) as defined at build time
    • modules (string) comma separated list
    • number_type (string) integer or float

!!! attention

This interface is deprecated and will be removed in one of the next releases. Use the above calls instead.

  • for no group given: --deprecated
    • majorVer (number)
    • minorVer (number)
    • devVer (number)
    • chipid (number)
    • flashid (number)
    • flashsize (number)
    • flashmode (number)
    • flashspeed (number)

Example

majorVer, minorVer, devVer, chipid, flashid, flashsize, flashmode, flashspeed = node.info()
print("NodeMCU "..majorVer.."."..minorVer.."."..devVer)
for k,v in pairs(node.info("build_config")) do
print (k,v)
end
print(node.info("sw_version").git_release)

node.input()

Submits a string to the Lua interpreter. Similar to pcall(loadstring(str)), but without the single-line limitation.

!!! attention

This function only has an effect when invoked from a callback. Using it directly on the console **does not work**.

Syntax

node.input(str)

Parameters

str Lua chunk

Returns

nil

Example

sk:on("receive", function(conn, payload) node.input(payload) end)

See also

node.output()

node.output()

Redirects the Lua interpreter output to a callback function. Optionally also prints it to the serial console.

!!! caution

Do **not** attempt to `print()` or otherwise induce the Lua interpreter to produce output from within the callback function. Doing so results in infinite recursion, and leads to a watchdog-triggered restart.

Syntax

node.output(function(str), serial_debug)

Parameters

  • output_fn(str) a function accept every output as str, and can send the output to a socket (or maybe a file).
  • serial_debug 1 output also show in serial. 0: no serial output.

Returns

nil

Example

function tonet(str)
  sk:send(str)
end
node.output(tonet, 1)  -- serial also get the Lua output.
-- a simple telnet server
s=net.createServer(net.TCP)
s:listen(2323,function(c)
   con_std = c
   function s_output(str)
      if(con_std~=nil)
         then con_std:send(str)
      end
   end
   node.output(s_output, 0)   -- re-direct output to function s_ouput.
   c:on("receive",function(c,l)
      node.input(l)           -- works like pcall(loadstring(l)) but support multiple separate line
   end)
   c:on("disconnection",function(c)
      con_std = nil
      node.output(nil)        -- un-regist the redirect output function, output goes to serial
   end)
end)

See also

node.input()

node.readvdd33() --deprecated

Moved to adc.readvdd33().

node.restart()

Restarts the chip.

Syntax

node.restart()

Parameters

none

Returns

nil

node.restore()

Restores system configuration to defaults using the SDK function system_restore(), which is described in the documentation as:

Reset default settings of following APIs: wifi_station_set_auto_connect, wifi_set_phy_mode, wifi_softap_set_config related, wifi_station_set_config related, wifi_set_opmode, and APs information recorded by #define AP_CACHE.

Syntax

node.restore()

Parameters

none

Returns

nil

Example

node.restore()
node.restart() -- ensure the restored settings take effect

node.setcpufreq()

Change the working CPU Frequency.

Syntax

node.setcpufreq(speed)

Parameters

speed constant 'node.CPU80MHZ' or 'node.CPU160MHZ'

Returns

target CPU frequency (number)

Example

node.setcpufreq(node.CPU80MHZ)

node.setpartitiontable()

Sets the current LFS and / or SPIFFS partition information.

Syntax

node.setpartitiontable(partition_info)

!!! note This function is typically only used once during initial provisioning after first flashing the firmware. It does some consistency checks to validate the specified parameters, and it then reboots the ESP module to load the new partition table. If the LFS or SPIFFS regions have changed then you will need to reload LFS, reformat the SPIFSS and reload its contents.

Parameters

An array containing one or more of the following enties. The address values are byte offsets relative to the start of the Flash memory. The size values are in bytes. Note that these parameters must be a multiple of 8Kb to align to Flash page boundaries.

  • lfs_addr. The base address of the LFS region.
  • lfs_size. The size of the LFS region.
  • spiffs_addr. The base address of the SPIFFS region.
  • spiffs_size. The size of the SPIFFS region.

Returns

Not applicable. The ESP module will be rebooted for a valid new set, or a Lua error will be thown if inconsistencies are detected.

Example

node.setpartitiontable{lfs_size = 0x20000, spiffs_addr = 0x120000, spiffs_size = 0x20000}

See also

node.getpartitiontable()

node.sleep()

Put NodeMCU in light sleep mode to reduce current consumption.

  • NodeMCU can not enter light sleep mode if wifi is suspended.
  • All active timers will be suspended and then resumed when NodeMCU wakes from sleep.

!!! attention This is disabled by default. Modify PMSLEEP_ENABLE in app/include/user_config.h to enable it.

Syntax

node.sleep({wake_pin[, int_type, resume_cb, preserve_mode]})

Parameters

  • wake_pin 1-12, pin to attach wake interrupt to. Note that pin 0(GPIO 16) does not support interrupts.
    • Please refer to the GPIO module for more info on the pin map.
  • int_type type of interrupt that you would like to wake on. (Optional, Default: node.INT_LOW)
    • valid interrupt modes:
      • node.INT_UP Rising edge
      • node.INT_DOWN Falling edge
      • node.INT_BOTH Both edges
      • node.INT_LOW Low level
      • node.INT_HIGH High level
  • resume_cb Callback to execute when WiFi wakes from suspension. (Optional)
  • preserve_mode preserve current WiFi mode through node sleep. (Optional, Default: true)
    • If true, Station and StationAP modes will automatically reconnect to previously configured Access Point when NodeMCU resumes.
    • If false, discard WiFi mode and leave NodeMCU in wifi.NULL_MODE. WiFi mode will be restored to original mode on restart.

Returns

  • nil

Example


--Put NodeMCU in light sleep mode indefinitely with resume callback and wake interrupt
 cfg={}
 cfg.wake_pin=3
 cfg.resume_cb=function() print("WiFi resume") end

 node.sleep(cfg)

--Put NodeMCU in light sleep mode with interrupt, resume callback and discard WiFi mode
 cfg={}
 cfg.wake_pin=3 --GPIO0
 cfg.resume_cb=function() print("WiFi resume") end
 cfg.preserve_mode=false

 node.sleep(cfg)

See also

node.stripdebug()

Controls the amount of debug information kept during node.compile(), and allows removal of debug information from already compiled Lua code.

Only recommended for advanced users, the NodeMCU defaults are fine for almost all use cases.

####Syntax node.stripdebug([level[, function]])

Parameters

  • level
    • 1, don't discard debug info
    • 2, discard Local and Upvalue debug info
    • 3, discard Local, Upvalue and line-number debug info
  • function a compiled function to be stripped per setfenv except 0 is not permitted.

If no arguments are given then the current default setting is returned. If function is omitted, this is the default setting for future compiles. The function argument uses the same rules as for setfenv().

Returns

If invoked without arguments, returns the current level settings. Otherwise, nil is returned.

Example

node.stripdebug(3)
node.compile('bigstuff.lua')

See also

node.compile()

node.osprint()

Controls whether the debugging output from the Espressif SDK is printed. Note that this is only available if the firmware is build with DEVELOPMENT_TOOLS defined.

####Syntax node.osprint(enabled)

Parameters

  • enabled This is either true to enable printing, or false to disable it. The default is false.

Returns

Nothing

Example

node.osprint(true)

node.random()

This behaves like math.random except that it uses true random numbers derived from the ESP8266 hardware. It returns uniformly distributed numbers in the required range. It also takes care to get large ranges correct.

It can be called in three ways. Without arguments in the floating point build of NodeMCU, it returns a random real number with uniform distribution in the interval [0,1). When called with only one argument, an integer n, it returns an integer random number x such that 1 <= x <= n. For instance, you can simulate the result of a die with random(6). Finally, random can be called with two integer arguments, l and u, to get a pseudo-random integer x such that l <= x <= u.

Syntax

node.random() node.random(n) node.random(l, u)

Parameters

  • n the number of distinct integer values that can be returned -- in the (inclusive) range 1 .. n
  • l the lower bound of the range
  • u the upper bound of the range

Returns

The random number in the appropriate range. Note that the zero argument form will always return 0 in the integer build.

Example

print ("I rolled a", node.random(6))

node.egc module

node.egc.setmode()

Sets the Emergency Garbage Collector mode. The EGC whitepaper provides more detailed information on the EGC.

####Syntax node.egc.setmode(mode, [param])

Parameters

  • mode
    • node.egc.NOT_ACTIVE EGC inactive, no collection cycle will be forced in low memory situations
    • node.egc.ON_ALLOC_FAILURE Try to allocate a new block of memory, and run the garbage collector if the allocation fails. If the allocation fails even after running the garbage collector, the allocator will return with error.
    • node.egc.ON_MEM_LIMIT Run the garbage collector when the memory used by the Lua script goes beyond an upper limit. If the upper limit can't be satisfied even after running the garbage collector, the allocator will return with error. If the given limit is negative, it is interpreted as the desired amount of heap which should be left available. Whenever the free heap (as reported by node.heap() falls below the requested limit, the garbage collector will be run.
    • node.egc.ALWAYS Run the garbage collector before each memory allocation. If the allocation fails even after running the garbage collector, the allocator will return with error. This mode is very efficient with regards to memory savings, but it's also the slowest.
  • level in the case of node.egc.ON_MEM_LIMIT, this specifies the memory limit.

Returns

nil

Example

node.egc.setmode(node.egc.ALWAYS, 4096) -- This is the default setting at startup. node.egc.setmode(node.egc.ON_ALLOC_FAILURE) -- This is the fastest activeEGC mode. node.egc.setmode(node.egc.ON_MEM_LIMIT, 30720) -- Only allow the Lua runtime to allocate at most 30k, collect garbage if limit is about to be hit node.egc.setmode(node.egc.ON_MEM_LIMIT, -6144) -- Try to keep at least 6k heap available for non-Lua use (e.g. network buffers)

node.egc.meminfo()

Returns memory usage information for the Lua runtime.

####Syntax total_allocated, estimated_used = node.egc.meminfo()

Parameters

None.

Returns

  • total_allocated The total number of bytes allocated by the Lua runtime. This is the number which is relevant when using the node.egc.ON_MEM_LIMIT option with positive limit values.
  • estimated_used This value shows the estimated usage of the allocated memory.

node.task module

node.task.post()

Enable a Lua callback or task to post another task request. Note that as per the example multiple tasks can be posted in any task, but the highest priority is always delivered first.

If the task queue is full then a queue full error is raised.

####Syntax node.task.post([task_priority], function)

Parameters

  • task_priority (optional)
    • node.task.LOW_PRIORITY = 0
    • node.task.MEDIUM_PRIORITY = 1
    • node.task.HIGH_PRIORITY = 2
  • function a callback function to be executed when the task is run.

If the priority is omitted then this defaults to node.task.MEDIUM_PRIORITY

Returns

nil

Example

for i = node.task.LOW_PRIORITY, node.task.HIGH_PRIORITY do
  node.task.post(i,function(p2)
    print("priority is "..p2)
  end)
end

prints

priority is 2
priority is 1
priority is 0