nodemcu-firmware/components/modules/matrix.c

575 lines
15 KiB
C

/*
* Module for interfacing with cheap matrix keyboards like telephone keypads
*
* The idea is to have pullups on all the rows, and drive the columns low.
* WHen a key is pressed, one of the rows will go low and trigger an interrupt. Disable
* all the row interrupts.
* Then we disable all the columns and then drive each column low in turn. Hopefully
* one of the rows will go low. This is a keypress. We only report the first keypress found.
* we start a timer to handle debounce.
* On timer expiry, see if any key is pressed, if so, just wait agin (maybe should use interrupts)
* If no key is pressed, run timer again. On timer expiry, re-enable interrupts.
*
* Philip Gladstone, N1DQ
*/
#include "module.h"
#include "lauxlib.h"
#include "platform.h"
#include "task/task.h"
#include "esp_timer.h"
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "driver/gpio.h"
#define MATRIX_PRESS_INDEX 0
#define MATRIX_RELEASE_INDEX 1
#define MATRIX_ALL 0x3
#define CALLBACK_COUNT 2
#define QUEUE_SIZE 8
typedef struct {
uint8_t column_count;
uint8_t row_count;
uint8_t *columns;
uint8_t *rows;
int character_ref;
int callback[CALLBACK_COUNT];
esp_timer_handle_t timer_handle;
int8_t task_queued;
uint32_t read_offset; // Accessed by task
uint32_t write_offset; // Accessed by ISR
uint32_t last_press_change_time;
int tasknumber;
matrix_event_t queue[QUEUE_SIZE];
void *callback_arg;
} DATA;
static task_handle_t tasknumber;
static void lmatrix_timer_done(void *param);
static void lmatrix_check_timer(DATA *d, uint32_t time_us, bool dotimer);
//
// Queue is empty if read == write.
// However, we always want to keep the previous value
// so writing is only allowed if write - read < QUEUE_SIZE - 1
#define GET_LAST_STATUS(d) (d->queue[(d->write_offset - 1) & (QUEUE_SIZE - 1)])
#define GET_PREV_STATUS(d) (d->queue[(d->write_offset - 2) & (QUEUE_SIZE - 1)])
#define HAS_QUEUED_DATA(d) (d->read_offset < d->write_offset)
#define HAS_QUEUE_SPACE(d) (d->read_offset + QUEUE_SIZE - 1 > d->write_offset)
#define REPLACE_STATUS(d, x) \
(d->queue[(d->write_offset - 1) & (QUEUE_SIZE - 1)] = \
(matrix_event_t){(x), esp_timer_get_time()})
#define QUEUE_STATUS(d, x) \
(d->queue[(d->write_offset++) & (QUEUE_SIZE - 1)] = \
(matrix_event_t){(x), esp_timer_get_time()})
#define GET_READ_STATUS(d) (d->queue[d->read_offset & (QUEUE_SIZE - 1)])
#define ADVANCE_IF_POSSIBLE(d) \
if (d->read_offset < d->write_offset) { \
d->read_offset++; \
}
typedef struct matrix_driver_handle {
int8_t phase_a_pin;
int8_t phase_b_pin;
int8_t press_pin;
int8_t task_queued;
uint32_t read_offset; // Accessed by task
uint32_t write_offset; // Accessed by ISR
uint32_t last_press_change_time;
int tasknumber;
matrix_event_t queue[QUEUE_SIZE];
void *callback_arg;
} *matrix_driver_handle_t;
static void set_gpio_mode_input(int pin, gpio_int_type_t intr) {
gpio_config_t config = {.pin_bit_mask = 1LL << pin,
.mode = GPIO_MODE_INPUT,
.pull_up_en = GPIO_PULLUP_ENABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE,
.intr_type = intr};
gpio_config(&config);
}
static void set_gpio_mode_output(int pin) {
gpio_config_t config = {.pin_bit_mask = 1LL << pin,
.mode = GPIO_MODE_OUTPUT,
.pull_up_en = GPIO_PULLUP_DISABLE,
.pull_down_en = GPIO_PULLDOWN_DISABLE
};
gpio_config(&config);
}
static void matrix_clear_pin(int pin) {
if (pin >= 0) {
gpio_isr_handler_remove(pin);
set_gpio_mode_input(pin, GPIO_INTR_DISABLE);
}
}
static void set_row_interrupts(DATA *d, bool enable)
{
for (int i = 0; i < d->row_count; i++) {
set_gpio_mode_input(d->row[i], enable ? GPIO_INTR_NEGEDGE : GPIO_INTR_DISABLE);
}
}
static int set_columns_as_input(DATA *d)
{
for (int i = 0; i < d->column_count; i++) {
set_gpio_mode_input(d->column[i], GPIO_INTR_DISABLE);
}
}
// Just takes the channel number. Cleans up the resources used.
int matrix_close(DATA *d) {
if (!d) {
return 0;
}
for (int i = 0; i < d->row_count; i++) {
matrix_clear_pin(d->row[i]);
}
set_columns_as_input(d);
return 0;
}
static void matrix_interrupt(void *arg) {
// This function runs with high priority
DATA *d = (DATA *)arg;
uint32_t now = esp_timer_get_time();
int i;
set_columns_as_input(d);
set_row_interrupts(d, false);
int character = -1;
for (int i = 0; i < d->column_count && character < 0; i++) {
set_gpio_mode_output(d->columns[i]);
gpio_set_level(d->columns[i], 0);
for (int j = 0; i < d->row_count && character < 0; j++) {
if (gpio_get_level(d->rows[j]) == 0) {
// We found a keypress
character = j * d->column_count + i;
}
}
set_gpio_mode_input(d->columns[i], GPIO_INTR_DISABLE);
}
// If character is >= 0 then we have found the character -- so send it.
if (last_status != new_status) {
// Either we overwrite the status or we add a new one
if (!HAS_QUEUED_DATA(d) || STATUS_IS_PRESSED(last_status ^ new_status) ||
STATUS_IS_PRESSED(last_status ^ GET_PREV_STATUS(d).pos)) {
if (HAS_QUEUE_SPACE(d)) {
QUEUE_STATUS(d, new_status);
if (!d->task_queued) {
if (task_post_medium(d->tasknumber, (task_param_t)d->callback_arg)) {
d->task_queued = 1;
}
}
} else {
REPLACE_STATUS(d, new_status);
}
} else {
REPLACE_STATUS(d, new_status);
}
}
}
void matrix_event_handled(matrix_driver_handle_t d) { d->task_queued = 0; }
// The pin numbers are actual platform GPIO numbers
matrix_driver_handle_t matrix_setup(int phase_a, int phase_b, int press,
task_handle_t tasknumber, void *arg) {
matrix_driver_handle_t d = (matrix_driver_handle_t)calloc(1, sizeof(*d));
if (!d) {
return NULL;
}
d->tasknumber = tasknumber;
d->callback_arg = arg;
set_gpio_mode(phase_a, GPIO_INTR_ANYEDGE);
gpio_isr_handler_add(phase_a, matrix_interrupt, d);
d->phase_a_pin = phase_a;
set_gpio_mode(phase_b, GPIO_INTR_ANYEDGE);
gpio_isr_handler_add(phase_b, matrix_interrupt, d);
d->phase_b_pin = phase_b;
if (press >= 0) {
set_gpio_mode(press, GPIO_INTR_ANYEDGE);
gpio_isr_handler_add(press, matrix_interrupt, d);
}
d->press_pin = press;
return d;
}
bool matrix_has_queued_event(matrix_driver_handle_t d) {
if (!d) {
return false;
}
return HAS_QUEUED_DATA(d);
}
// Get the oldest event in the queue and remove it (if possible)
bool matrix_getevent(matrix_driver_handle_t d, matrix_event_t *resultp) {
matrix_event_t result = {0};
if (!d) {
return false;
}
bool status = false;
if (HAS_QUEUED_DATA(d)) {
result = GET_READ_STATUS(d);
d->read_offset++;
status = true;
} else {
result = GET_LAST_STATUS(d);
}
*resultp = result;
return status;
}
int matrix_getpos(matrix_driver_handle_t d) {
if (!d) {
return -1;
}
return GET_LAST_STATUS(d).pos;
}
static void callback_free_one(lua_State *L, int *cb_ptr)
{
if (*cb_ptr != LUA_NOREF) {
luaL_unref(L, LUA_REGISTRYINDEX, *cb_ptr);
*cb_ptr = LUA_NOREF;
}
}
static void callback_free(lua_State* L, DATA *d, int mask)
{
if (d) {
int i;
for (i = 0; i < CALLBACK_COUNT; i++) {
if (mask & (1 << i)) {
callback_free_one(L, &d->callback[i]);
}
}
}
}
static int callback_setOne(lua_State* L, int *cb_ptr, int arg_number)
{
if (lua_isfunction(L, arg_number)) {
lua_pushvalue(L, arg_number); // copy argument (func) to the top of stack
callback_free_one(L, cb_ptr);
*cb_ptr = luaL_ref(L, LUA_REGISTRYINDEX);
return 0;
}
return -1;
}
static int callback_set(lua_State* L, DATA *d, int mask, int arg_number)
{
int result = 0;
int i;
for (i = 0; i < CALLBACK_COUNT; i++) {
if (mask & (1 << i)) {
result |= callback_setOne(L, &d->callback[i], arg_number);
}
}
return result;
}
static void callback_callOne(lua_State* L, int cb, int mask, int arg, uint32_t time)
{
if (cb != LUA_NOREF) {
lua_rawgeti(L, LUA_REGISTRYINDEX, cb);
lua_pushinteger(L, mask);
lua_pushvalue(L, arg - 2);
lua_pushinteger(L, time);
luaL_pcallx(L, 3, 0);
}
}
static void callback_call(lua_State* L, DATA *d, int cbnum, int key, uint32_t time)
{
if (d) {
lua_rawgeti(L, LUA_REGISTRYINDEX, d->character_ref);
lua_rawgeti(L, -1, key);
callback_callOne(L, d->callback[cbnum], 1 << cbnum, -1, time);
lua_pop(L, 2);
}
}
// Lua: setup({cols}, {rows}, {characters})
static int lmatrix_setup( lua_State* L )
{
int nargs = lua_gettop(L);
// Get the sizes of the first two tables
luaL_checktype(L, 1, LUA_TTABLE);
luaL_checktype(L, 2, LUA_TTABLE);
luaL_checktype(L, 3, LUA_TTABLE);
size_t columns = lua_rawlen(L, 1);
size_t rows = lua_rawlen(L, 2);
if (columns > 255 || rows > 255) {
return luaL_error(L, "Too many rows or columns");
}
DATA *d = (DATA *)lua_newuserdata(L, sizeof(DATA) + rows + columns);
if (!d) return luaL_error(L, "not enough memory");
memset(d, 0, sizeof(*d) + rows + columns);
luaL_getmetatable(L, "matrix.keyboard");
lua_setmetatable(L, -2);
d->columns = (uint8_t *) (d + 1);
d->rows = d->columns + columns;
d->column_count = columns;
d->row_count = rows;
esp_timer_create_args_t timer_args = {
.callback = lmatrix_timer_done,
.dispatch_method = ESP_TIMER_TASK,
.name = "matrix_timer",
.arg = d
};
esp_timer_create(&timer_args, &d->timer_handle);
int i;
for (i = 0; i < CALLBACK_COUNT; i++) {
d->callback[i] = LUA_NOREF;
}
getpins(L, 1, columns, &d->columns);
getpins(L, 2, rows, &d->rows);
lua_pushvalue(L, 3);
d->character_ref = luaL_ref(L, LUA_REGISTRYINDEX);
d->handle = matrix_setup(phase_a, phase_b, press, tasknumber, d);
if (!d->handle) {
return luaL_error(L, "Unable to setup matrix switch.");
}
return 1;
}
// Lua: close( )
static int lmatrix_close( lua_State* L )
{
DATA *d = (DATA *)luaL_checkudata(L, 1, "matrix.keyboard");
if (d->handle) {
callback_free(L, d, MATRIX_ALL);
if (matrix_close( d->handle )) {
return luaL_error( L, "Unable to close switch." );
}
d->handle = NULL;
}
return 0;
}
// Lua: on( mask[, cb] )
static int lmatrix_on( lua_State* L )
{
DATA *d = (DATA *)luaL_checkudata(L, 1, "matrix.keyboard");
int mask = luaL_checkinteger(L, 2);
if (lua_gettop(L) >= 3) {
if (callback_set(L, d, mask, 3)) {
return luaL_error( L, "Unable to set callback." );
}
} else {
callback_free(L, d, mask);
}
return 0;
}
// Returns TRUE if there maybe/is more stuff to do
static bool lmatrix_dequeue_single(lua_State* L, DATA *d)
{
bool something_pending = false;
if (d) {
matrix_event_t result;
if (matrix_getevent(d->handle, &result)) {
int pos = result.pos;
lmatrix_check_timer(d, result.time_us, 0);
if (pos != d->lastpos) {
// We have something to enqueue
if ((pos ^ d->lastpos) & 0x7fffffff) {
// Some turning has happened
callback_call(L, d, matrix_TURN_INDEX, (pos << 1) >> 1, result.time_us);
}
if ((pos ^ d->lastpos) & 0x80000000) {
// pressing or releasing has happened
callback_call(L, d, (pos & 0x80000000) ? matrix_PRESS_INDEX : matrix_RELEASE_INDEX, (pos << 1) >> 1, result.time_us);
if (pos & 0x80000000) {
// Press
if (d->last_recent_event_was_release && result.time_us - d->last_event_time < d->click_delay_us) {
d->possible_dbl_click = 1;
}
d->last_recent_event_was_press = 1;
d->last_recent_event_was_release = 0;
} else {
// Release
d->last_recent_event_was_press = 0;
if (d->possible_dbl_click) {
callback_call(L, d, matrix_DBLCLICK_INDEX, (pos << 1) >> 1, result.time_us);
d->possible_dbl_click = 0;
// Do this to suppress the CLICK event
d->last_recent_event_was_release = 0;
} else {
d->last_recent_event_was_release = 1;
}
}
d->last_event_time = result.time_us;
}
d->lastpos = pos;
}
matrix_event_handled(d->handle);
something_pending = matrix_has_queued_event(d->handle);
}
lmatrix_check_timer(d, esp_timer_get_time(), 1);
}
return something_pending;
}
static void lmatrix_timer_done(void *param)
{
DATA *d = (DATA *) param;
d->timer_running = 0;
lmatrix_check_timer(d, esp_timer_get_time(), 1);
}
static void lmatrix_check_timer(DATA *d, uint32_t time_us, bool dotimer)
{
uint32_t delay = time_us - d->last_event_time;
if (d->timer_running) {
esp_timer_stop(d->timer_handle);
d->timer_running = 0;
}
int timeout = -1;
if (d->last_recent_event_was_press) {
if (delay > d->longpress_delay_us) {
callback_call(lua_getstate(), d, matrix_LONGPRESS_INDEX, (d->lastpos << 1) >> 1, d->last_event_time + d->longpress_delay_us);
d->last_recent_event_was_press = 0;
} else {
timeout = (d->longpress_delay_us - delay) / 1000;
}
}
if (d->last_recent_event_was_release) {
if (delay > d->click_delay_us) {
callback_call(lua_getstate(), d, matrix_CLICK_INDEX, (d->lastpos << 1) >> 1, d->last_event_time + d->click_delay_us);
d->last_recent_event_was_release = 0;
} else {
timeout = (d->click_delay_us - delay) / 1000;
}
}
if (dotimer && timeout >= 0) {
d->timer_running = 1;
esp_timer_start_once(d->timer_handle, timeout + 1);
}
}
static void lmatrix_task(task_param_t param, task_prio_t prio)
{
(void) prio;
bool need_to_post = false;
lua_State *L = lua_getstate();
DATA *d = (DATA *) param;
if (d) {
if (lmatrix_dequeue_single(L, d)) {
need_to_post = true;
}
}
if (need_to_post) {
// If there is pending stuff, queue another task
task_post_medium(tasknumber, param);
}
}
// Module function map
LROT_BEGIN(matrix, NULL, 0)
LROT_FUNCENTRY( setup, lmatrix_setup )
LROT_NUMENTRY( PRESS, MASK(PRESS) )
LROT_NUMENTRY( RELEASE, MASK(RELEASE) )
LROT_NUMENTRY( ALL, MATRIX_ALL )
LROT_END(matrix, NULL, 0)
// Module function map
LROT_BEGIN(matrix_keyboard, NULL, LROT_MASK_GC_INDEX)
LROT_FUNCENTRY(__gc, lmatrix_close)
LROT_TABENTRY(__index, matrix_keyboard)
LROT_FUNCENTRY(on, lmatrix_on)
LROT_FUNCENTRY(close, lmatrix_close)
LROT_END(matrix_keyboard, NULL, LROT_MASK_GC_INDEX)
static int matrix_open(lua_State *L) {
luaL_rometatable(L, "matrix.keyboard",
LROT_TABLEREF(matrix_keyboard)); // create metatable
tasknumber = task_get_id(lmatrix_task);
return 0;
}
NODEMCU_MODULE(matrix, "matrix", matrix, matrix_open);