boxespy/boxes/generators/dividertray.py

663 lines
22 KiB
Python
Raw Normal View History

2019-08-03 19:06:23 +02:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (C) 2013-2014 Florian Festi
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from functools import partial
2019-08-03 19:06:23 +02:00
from boxes import Boxes, edges, boolarg
import math
2019-08-03 19:06:23 +02:00
2022-03-28 22:00:12 +02:00
class NotchSettings(edges.Settings):
"""Settings for Notches on the Dividers"""
2022-03-28 22:00:12 +02:00
absolute_params = {
"upper_radius": 1,
"lower_radius": 8,
"depth": 15,
}
class SlotSettings(edges.Settings):
"""Settings for Divider Slots
2022-03-28 22:00:12 +02:00
Values:
* absolute
* depth : 20 : depth of the slot in mm
* angle : 0 : angle at which slots are generated, in degrees. 0° is vertical.
* radius : 2 : radius of the slot entrance in mm
* extra_slack : 0.2 : extra slack (in addition to thickness and kerf) to help insert dividers in mm"""
2022-03-28 22:00:12 +02:00
absolute_params = {
"depth": 20,
"angle": 0,
"radius": 2,
"extra_slack": 0.2,
}
class DividerSettings(edges.Settings):
"""Settings for Dividers
Values:
* absolute_params
* bottom_margin : 0 : margin between box's bottom and divider's in mm
2022-03-28 22:00:12 +02:00
* relative (in multiples of thickness)
* play : 0.05 : play to avoid them clamping onto the walls (in multiples of thickness)
2022-03-28 22:00:12 +02:00
"""
absolute_params = {
"bottom_margin": 0,
}
relative_params = {
"play": 0.05,
}
2019-08-03 19:06:23 +02:00
class DividerTray(Boxes):
"""Divider tray - rows and dividers"""
description = """
Adding '0:' at the start of the sy parameter adds a slot at the very back. Adding ':0' at the end of sy adds a slot meeting the bottom at the very front. This is especially useful if slot angle is set above zero.
There are 4 different sets of dividers rendered:
* With asymetric tabs so the tabs fit on top of each other
* With tabs of half wall thickness that can go side by side
* With tabs of a full wall thickness
* One single divider spanning across all columns
You will likely need to cut each of the dividers you want multiple times.
"""
2019-08-03 19:06:23 +02:00
ui_group = "Tray"
def __init__(self):
Boxes.__init__(self)
self.addSettingsArgs(edges.FingerJointSettings)
self.addSettingsArgs(edges.HandleEdgeSettings)
2019-08-03 19:06:23 +02:00
self.buildArgParser("sx", "sy", "h", "outside")
2022-03-28 22:00:12 +02:00
self.addSettingsArgs(SlotSettings)
self.addSettingsArgs(NotchSettings)
self.addSettingsArgs(DividerSettings)
self.argparser.add_argument(
"--notches_in_wall",
type=boolarg,
default=True,
help="generate the same notches on the walls that are on the dividers",
)
2019-08-03 19:06:23 +02:00
self.argparser.add_argument(
"--left_wall",
type=boolarg,
default=True,
help="generate wall on the left side",
)
self.argparser.add_argument(
"--right_wall",
type=boolarg,
default=True,
help="generate wall on the right side",
)
self.argparser.add_argument(
"--bottom", type=boolarg, default=False, help="generate wall on the bottom",
)
self.argparser.add_argument(
"--handle", type=boolarg, default=False, help="add handle to the bottom",
)
2019-08-03 19:06:23 +02:00
def render(self):
side_walls_number = len(self.sx) - 1 + sum([self.left_wall, self.right_wall])
if side_walls_number == 0:
raise ValueError("You need at least one side wall to generate this tray")
2019-08-03 19:06:23 +02:00
# We need to adjust height before slot generation
if self.outside:
if self.bottom:
self.h -= self.thickness
else:
# If the parameter 'h' is the inner height of the content itself,
# then the actual tray height needs to be adjusted with the angle
2022-03-28 22:00:12 +02:00
self.h = self.h * math.cos(math.radians(self.Slot_angle))
slot_descriptions = SlotDescriptionsGenerator().generate_all_same_angles(
self.sy,
self.thickness,
2022-03-28 22:00:12 +02:00
self.Slot_extra_slack,
self.Slot_depth,
self.h,
2022-03-28 22:00:12 +02:00
self.Slot_angle,
self.Slot_radius,
)
2019-08-03 19:06:23 +02:00
# If measures are outside, we need to readjust slots afterwards
2019-08-03 19:06:23 +02:00
if self.outside:
self.sx = self.adjustSize(self.sx, self.left_wall, self.right_wall)
side_wall_target_length = sum(self.sy) - 2 * self.thickness
slot_descriptions.adjust_to_target_length(side_wall_target_length)
self.ctx.save()
# Facing walls (outer) with finger holes to support side walls
facing_wall_length = sum(self.sx) + self.thickness * (len(self.sx) - 1)
side_edge = lambda with_wall: "F" if with_wall else "e"
bottom_edge = lambda with_wall, with_handle: ("f" if with_handle else "F") if with_wall else "e"
upper_edge = (
DividerNotchesEdge(
self,
list(reversed(self.sx)),
)
if self.notches_in_wall
else "e"
)
2019-08-03 19:06:23 +02:00
for _ in range(2):
self.rectangularWall(
facing_wall_length,
self.h,
[
bottom_edge(self.bottom, _ and self.handle),
side_edge(self.right_wall),
upper_edge,
side_edge(self.left_wall),
],
callback=[partial(self.generate_finger_holes, self.h)],
2022-06-16 17:42:59 +02:00
move="up", label = "Front" if _ else "Back",
2019-08-03 19:06:23 +02:00
)
# Side walls (outer & inner) with slots to support dividers
side_wall_length = slot_descriptions.total_length()
for _ in range(side_walls_number):
if _ < side_walls_number - (len(self.sx) - 1):
be = "F" if self.bottom else "e"
else:
be = "f" if self.bottom else "e"
2019-08-03 19:06:23 +02:00
se = DividerSlotsEdge(self, slot_descriptions.descriptions)
self.rectangularWall(
2022-06-16 17:42:59 +02:00
side_wall_length, self.h, [be, "f", se, "f"], move="up", label="Sidepiece " + str(_ + 1)
2019-08-03 19:06:23 +02:00
)
# Switch to right side of the file
self.ctx.restore()
self.rectangularWall(
2022-06-16 17:42:59 +02:00
max(facing_wall_length, side_wall_length), self.h, "ffff", move="right only", label="invisible"
2019-08-03 19:06:23 +02:00
)
# Bottom piece.
if self.bottom:
self.rectangularWall(
facing_wall_length,
side_wall_length,
[
"f",
"f" if self.right_wall else "e",
"Y" if self.handle else "f",
"f" if self.left_wall else "e",
],
callback=[partial(self.generate_finger_holes, side_wall_length)],
2022-06-16 17:42:59 +02:00
move="up", label="Bottom",
)
2019-08-03 19:06:23 +02:00
# Dividers
divider_height = (
# h, with angle adjustement
2022-03-28 22:00:12 +02:00
self.h / math.cos(math.radians(self.Slot_angle))
2019-08-03 19:06:23 +02:00
# removing what exceeds in the width of the divider
2022-03-28 22:00:12 +02:00
- self.thickness * math.tan(math.radians(self.Slot_angle))
2019-08-03 19:06:23 +02:00
# with margin
2022-03-28 22:00:12 +02:00
- self.Divider_bottom_margin
2019-08-03 19:06:23 +02:00
)
self.generate_divider(
self.sx, divider_height, "up",
first_tab_width=self.thickness if self.left_wall else 0,
second_tab_width=self.thickness if self.right_wall else 0
)
for tabs, asymetric_tabs in [(self.thickness, None),
(self.thickness / 2, None),
(self.thickness, 0.5),]:
with self.saved_context():
for i, length in enumerate(self.sx):
self.generate_divider(
[length],
divider_height,
"right",
first_tab_width=tabs if self.left_wall or i>0 else 0,
second_tab_width=tabs if self.right_wall or i<(len(self.sx) - 1) else 0,
asymetric_tabs=asymetric_tabs,
)
if asymetric_tabs:
self.moveTo(-tabs, self.spacing)
self.generate_divider(self.sx, divider_height, "up only")
2019-08-03 19:06:23 +02:00
if self.debug:
debug_info = ["Debug"]
debug_info.append(
"Slot_edge_outer_length:{0:.2f}".format(
slot_descriptions.total_length() + 2 * self.thickness
)
)
debug_info.append(
"Slot_edge_inner_lengths:{0}".format(
str.join(
"|",
[
"{0:.2f}".format(e.usefull_length())
for e in slot_descriptions.get_straigth_edges()
],
)
)
)
debug_info.append(
"Face_edge_outer_length:{0:.2f}".format(
facing_wall_length
+ self.thickness * sum([self.left_wall, self.right_wall])
)
)
debug_info.append(
"Face_edge_inner_lengths:{0}".format(
str.join("|", ["{0:.2f}".format(e) for e in self.sx])
)
)
debug_info.append("Tray_height:{0:.2f}".format(self.h))
debug_info.append(
"Content_height:{0:.2f}".format(
2022-03-28 22:00:12 +02:00
self.h / math.cos(math.radians(self.Slot_angle))
2019-08-03 19:06:23 +02:00
)
)
self.text(str.join("\n", debug_info), x=5, y=5, align="bottom left")
def generate_finger_holes(self, length):
2019-08-03 19:06:23 +02:00
posx = -0.5 * self.thickness
for x in self.sx[:-1]:
posx += x + self.thickness
self.fingerHolesAt(posx, 0, length)
2019-08-03 19:06:23 +02:00
def generate_divider(
self, widths, height, move,
first_tab_width=0, second_tab_width=0,
asymetric_tabs=None):
total_width = sum(widths) + (len(widths)-1) * self.thickness + first_tab_width + second_tab_width
2019-08-03 19:06:23 +02:00
if self.move(total_width, height, move, True):
return
2022-03-28 22:00:12 +02:00
play = self.Divider_play
left_tab_height = right_tab_height = self.Slot_depth
if asymetric_tabs:
left_tab_height = left_tab_height * asymetric_tabs - play
right_tab_height = right_tab_height * (1-asymetric_tabs)
2019-08-03 19:06:23 +02:00
# Upper: first tab width
if asymetric_tabs:
self.moveTo(first_tab_width - play)
else:
self.edge(first_tab_width - play)
# Upper edge with a finger notch
for nr, width in enumerate(widths):
if nr > 0:
self.edge(self.thickness)
DividerNotchesEdge(
self,
[width],
)(width)
2019-08-03 19:06:23 +02:00
self.polyline(
# Upper: second tab width if needed
second_tab_width - play,
# First side, with tab depth only if there is 2 walls
90,
left_tab_height,
90,
second_tab_width,
-90,
height - left_tab_height,
2022-03-28 22:00:12 +02:00
90,
)
# Lower edge
for width in reversed(widths[1:]):
2022-03-28 22:00:12 +02:00
self.polyline(
width - 2 * play,
90,
height - self.Slot_depth,
-90,
self.thickness + 2 * play,
-90,
height - self.Slot_depth,
90,
)
self.polyline(
# Second side tab
widths[0] - 2 * play,
90,
2022-03-28 22:00:12 +02:00
height - self.Slot_depth,
-90,
first_tab_width,
90,
right_tab_height,
90
)
if asymetric_tabs:
self.polyline(
first_tab_width - play,
-90,
self.Slot_depth-right_tab_height,
90
)
2019-08-03 19:06:23 +02:00
# Move for next piece
2022-06-16 17:42:59 +02:00
self.move(total_width, height, move, label="Divider")
2019-08-03 19:06:23 +02:00
class SlottedEdgeDescriptions:
def __init__(self):
self.descriptions = []
def add(self, description):
self.descriptions.append(description)
def get_straigth_edges(self):
return [x for x in self.descriptions if isinstance(x, StraightEdgeDescription)]
def get_last_edge(self):
return self.descriptions[-1]
def adjust_to_target_length(self, target_length):
actual_length = sum([d.tracing_length() for d in self.descriptions])
compensation = actual_length - target_length
compensation_ratio = compensation / sum(
[d.asked_length for d in self.get_straigth_edges()]
)
for edge in self.get_straigth_edges():
edge.outside_ratio = 1 - compensation_ratio
def total_length(self):
return sum([x.tracing_length() for x in self.descriptions])
class StraightEdgeDescription:
def __init__(
self,
asked_length,
round_edge_compensation=0,
outside_ratio=1,
angle_compensation=0,
):
self.asked_length = asked_length
self.round_edge_compensation = round_edge_compensation
self.outside_ratio = outside_ratio
self.angle_compensation = angle_compensation
def __repr__(self):
return (
"StraightEdgeDescription({0}, round_edge_compensation={1}, angle_compensation={2}, outside_ratio={3})"
).format(
self.asked_length,
self.round_edge_compensation,
self.angle_compensation,
self.outside_ratio,
)
def tracing_length(self):
"""
How much length should take tracing this straight edge
"""
return (
(self.asked_length * self.outside_ratio)
- self.round_edge_compensation
+ self.angle_compensation
)
def usefull_length(self):
"""
Part of the length which might be used by the content of the tray
"""
return self.asked_length * self.outside_ratio
class Memoizer(dict):
def __init__(self, computation):
self.computation = computation
def __missing__(self, key):
res = self[key] = self.computation(key)
return res
class SlotDescription:
_div_by_cos_cache = Memoizer(lambda a: 1 / math.cos(math.radians(a)))
_tan_cache = Memoizer(lambda a: math.tan(math.radians(a)))
def __init__(
self, width, depth=20, angle=0, radius=0, start_radius=None, end_radius=None
):
self.depth = depth
self.width = width
self.start_radius = radius if start_radius == None else start_radius
self.end_radius = radius if end_radius == None else end_radius
self.angle = angle
def __repr__(self):
return "SlotDescription({0}, depth={1}, angle={2}, start_radius={3}, end_radius={4})".format(
self.width, self.depth, self.angle, self.start_radius, self.end_radius
)
def _div_by_cos(self):
return SlotDescription._div_by_cos_cache[self.angle]
def _tan(self):
return SlotDescription._tan_cache[self.angle]
def angle_corrected_width(self):
"""
returns how much width is the slot when measured horizontally, since the angle makes it bigger.
It's the same as the slot entrance width when radius is 0°.
"""
return self.width * self._div_by_cos()
def round_edge_start_correction(self):
"""
returns by how much we need to stop tracing our straight lines at the start of the slot
in order to do a curve line instead
"""
return self.start_radius * (self._div_by_cos() - self._tan())
def round_edge_end_correction(self):
"""
returns by how much we need to stop tracing our straight lines at the end of the slot
in order to do a curve line instead
"""
return self.end_radius * (self._div_by_cos() + self._tan())
def _depth_angle_correction(self):
"""
The angle makes one side of the slot deeper than the other.
"""
extra_depth = self.width * self._tan()
return extra_depth
def corrected_start_depth(self):
"""
Returns the depth of the straigth part of the slot starting side
"""
extra_depth = self._depth_angle_correction()
return self.depth + max(0, extra_depth) - self.round_edge_start_correction()
def corrected_end_depth(self):
"""
Returns the depth of the straigth part of the slot ending side
"""
extra_depth = self._depth_angle_correction()
return self.depth + max(0, -extra_depth) - self.round_edge_end_correction()
def tracing_length(self):
"""
How much length this slot takes on an edge
"""
return (
self.round_edge_start_correction()
+ self.angle_corrected_width()
+ self.round_edge_end_correction()
)
class SlotDescriptionsGenerator:
def generate_all_same_angles(
self, sections, thickness, extra_slack, depth, height, angle, radius=2,
):
width = thickness + extra_slack
descriptions = SlottedEdgeDescriptions()
# Special case: if first slot start at 0, then radius is 0
first_correction = 0
current_section = 0
if sections[0] == 0:
slot = SlotDescription(
width, depth=depth, angle=angle, start_radius=0, end_radius=radius,
)
descriptions.add(slot)
first_correction = slot.round_edge_end_correction()
current_section += 1
first_length = sections[current_section]
current_section += 1
descriptions.add(
StraightEdgeDescription(
first_length, round_edge_compensation=first_correction
)
)
for l in sections[current_section:]:
slot = SlotDescription(width, depth=depth, angle=angle, radius=radius,)
# Fix previous edge length
previous_edge = descriptions.get_last_edge()
previous_edge.round_edge_compensation += slot.round_edge_start_correction()
# Add this slot
descriptions.add(slot)
# Add the straigth edge after this slot
descriptions.add(
StraightEdgeDescription(l, slot.round_edge_end_correction())
)
# We need to add extra space for the divider (or the actual content)
# to slide all the way down to the bottom of the tray in spite of walls
end_length = height * math.tan(math.radians(angle))
descriptions.get_last_edge().angle_compensation += end_length
return descriptions
class DividerNotchesEdge(edges.BaseEdge):
"""Edge with multiple notches for easier access to dividers"""
description = "Edge with multiple notches for easier access to dividers"
2022-03-28 22:00:12 +02:00
def __init__(self, boxes, sx):
super().__init__(boxes, None)
self.sx = sx
def __call__(self, _, **kw):
first = True
for width in self.sx:
if first:
first = False
else:
self.edge(self.thickness)
self.edge_with_notch(width)
def edge_with_notch(self, width):
2022-03-28 22:00:12 +02:00
# width (with notch if possible)
upper_third = (
width - 2 * self.Notch_upper_radius - 2 * self.Notch_lower_radius
) / 3
if upper_third > 0:
2022-03-28 22:00:12 +02:00
straightHeight = (
self.Notch_depth - self.Notch_upper_radius - self.Notch_lower_radius
)
self.polyline(
upper_third,
2022-03-28 22:00:12 +02:00
(90, self.Notch_upper_radius),
straightHeight,
(-90, self.Notch_lower_radius),
upper_third,
2022-03-28 22:00:12 +02:00
(-90, self.Notch_lower_radius),
straightHeight,
(90, self.Notch_upper_radius),
upper_third,
)
else:
# if there isn't enough room for the radius, we don't use it
self.edge(width)
2019-08-03 19:06:23 +02:00
class DividerSlotsEdge(edges.BaseEdge):
"""Edge with multiple angled rounded slots for dividers"""
description = "Edge with multiple angled rounded slots for dividers"
def __init__(self, boxes, descriptions):
super().__init__(boxes, None)
2019-08-03 19:06:23 +02:00
self.descriptions = descriptions
def __call__(self, length, **kw):
self.ctx.save()
for description in self.descriptions:
if isinstance(description, SlotDescription):
self.do_slot(description)
elif isinstance(description, StraightEdgeDescription):
self.do_straight_edge(description)
# rounding errors might accumulates :
# restore context and redo the move straight
self.ctx.restore()
self.moveTo(length)
def do_straight_edge(self, straight_edge):
self.edge(straight_edge.tracing_length())
def do_slot(self, slot):
self.ctx.save()
self.polyline(
0,
(90 - slot.angle, slot.start_radius),
slot.corrected_start_depth(),
-90,
slot.width,
-90,
slot.corrected_end_depth(),
(90 + slot.angle, slot.end_radius),
)
2019-08-03 19:06:23 +02:00
# rounding errors might accumulates :
# restore context and redo the move straight
self.ctx.restore()
self.moveTo(slot.tracing_length())