Only compile-tested so far.
Of note is that the WiFi auto-connect (flag) functionality has been removed
from the IDF, and as a follow-on so has the "auto" field in the wifi config.
On the Ethernet side, support for the TLK110 PHY seems to have been removed,
but on the other hand there is now new support for several others.
Some parts dry-coded in the disabled modules; to be fixed when sorting out
the deprecated/removed APIs used in said modules.
Still untested beyond compile/linking.
Using the NODEMCU_ namespace prefix makes it obvious that these are not
part of Lua proper (contrast, e.g., LUA_BUILTIN_STRING). Using
"CMODULE" gives us room to differentiate between modules whose
implementation is in C and whose implemenation is in Lua ("LMODULE").
The ESP8266 branch can adopt the same convention when it moves to
Kconfig; see https://github.com/nodemcu/nodemcu-firmware/issues/3130
Manifests as multiple definition of esp_event_send during compilation, as bthci triggers inclusion of `event_loop.c`. Also improved lbth_init() to support BTDM or BLE_ONLY controller modes.
The path environment under Windows Subsystem for Linux typically
contains paths with spaces.
Error Manifests as: -
Setting IDF_PATH and re-invoking...
/bin/sh: 1: Syntax error: "(" unexpected
Makefile:21: recipe for target 'flash' failed
Tested on Ubuntu 18.04 both on Linux proper and WSL.
The repo we download from only has x86_64 anyway currently, but a
download error will be much more informative than bogus errors from
an incompatible compiler.
* Fix uart regressions & bugs.
Using `uart.on()` with a search character was broken in that it did
not invoke the callback on a full UART buffer as documented. Logic reworked
to match docs again.
Fixed memory leak on `task_post()` failure (eep!).
Improved logic to attempt to coalesce input bytes to reduce the number of
`task_post()` slots used up by the platform uart.
Finally, added a semaphore to prevent the platform uart from overrunning
the `task_post()` slots all the time on high baud rates (e.g. 1mbit).
With the semaphore in there, the LVM RTOS task gets a chance to actually
process the received data and free up a `task_post()` slot or two.
The above mentioned read coalescing then allows the platform uart to
immediately catch up.
Also added an error log message if the `task_post()` actually does fail.
* Don't cache the uart delims.
Doing so makes reconfiguring those settings from within the callback not
take effect until the currently buffered bytes have been processed.